
 1

 2

Accademia Musicale Studio Musica

International Conference on New Music Concepts and
Inspired Education

Proceeding Book

Vol. 6

Accademia Musicale Studio Musica
Michele Della Ventura

Editor

COPYRIGHT MATERIAL

 3

Printed in Italy

First edition: April 2019

©2019 Accademia Musicale Studio Musica
www.studiomusicatreviso.it

Accademia Musicale Studio Musica – Treviso (Italy)
ISBN: 978-88-944350-0-9

 4

Preface

This volume of proceedings from the conference provides an opportunity for readers to
engage with a selection of refereed papers that were presented during the International
Conference on New Music Concepts and Inspired Education. The reader will sample
here reports of research on topics ranging from mathematical models in music to pattern
recognition in music; symbolic music processing; music synthesis and transformation;
learning and conceptual change; teaching strategies; e-learning and innovative learning.
This book is meant to be a textbook that is suitable for courses at the advanced under-
graduate and beginning master level. By mixing theory and practice, the book provides
both profound technological knowledge as well as a comprehensive treatment of music
processing applications.
The goals of the Conference are to foster international research collaborations in the
fields of Music Studies and Education as well as to provide a forum to present current
research results in the forms of technical sessions, round table discussions during the
conference period in a relax and enjoyable atmosphere.
36 papers from 16 countries were received. All the submissions were reviewed on the
basis of their significance, novelty, technical quality, and practical impact. After careful
reviews by at least three experts in the relevant areas for each paper, 12 papers from 10
countries were accepted for presentation or poster display at the conference.

I want to take this opportunity to thank all participants who have worked hard to make
this conference a success. Thanks are also due to the staff of “Studio Musica” for their
help with producing the proceedings. I am also grateful to all members of Organizing
Committee, Local Arrangement Committee and Program Committee as well as all par-
ticipants who have worked hard to make this conference a success.
Finally I want to appreciate all authors for their excellent papers to this conference.

April 2019 Michele Della Ventura

 5

Contents

Playlist Shuffling given User-Defined Constraints on Song Sequencing ……… 7
 Sterling Ramroach, Patrick Hosein

Perceptual foundations for a nonlinear asynchronous expression ……………... 21
 Mitchell Bercier

A Mathematical Insight into Balakirev’s Orientalism in Islamey ……………... 34
 Nikita Mamedo

Generative Conceptual Blending of High-Level Melodic Features:
Shortcomings and Possible Improvements …….……………………………… 43
 Maximos Kaliakatsos-Papakostas

The use of virtual instruments in the process of creating a soundtrack
with film music. Is this the twilight of film music played by man? …………… 52
 Adrian Robak, Wojciech Wieczorek

MGTGAN: Cycle-Consistent Adversarial Networks for Symbolic
Multi-track Music Genre Transfer ………..…………………………………… 72
 YanLun Peng, Haitao Zheng

Kinetic Sound Art and The Sound Canvas ……………………………………. 79
 Ian Costabile

The Dagbon Hiplife Zone in Northern Ghana Contemporary Idioms of
Music Making in Tamale ………………………………..…………………… 85
 Dominik Phyfferoen

Raga classification in Indian Classical music - A generalized approach ……… 116
 Jayaganesh Kalyanasundaram, Saroja TK

The Music Education Project: Voices from Future Teachers …………………. 123
 Giovanna Carugno

Laying the Foundation For the Inclusion of indigenous Music in
Elementary and Secondary Puerto Rican Music Education …………………… 129
 Francisco L. Reyes

An Outline of Foreign Language Anxiety Research …………………………... 135
 Zdena Kralova

 6

Emotions and Foreign Language Learning: A Mysterious Relationship ……… 141
 Jana Kamenicka, Zdena Kralova

Exploring primary education teachers’ perceptions of their Technological
Pedagogical and Content Knowledge …………………………………………. 146
 D. Roussinos, and A. Jimoyiannis

Educational Non-visual Environment for Symbolic Programming
of Cartesian Motion to include Children with Visual Impairment into
Robotic Sciences ………………………………………………………………. 154

Francisco J. Ruiz-Sanchez, Enrique Mireles-Rodriguez, Gustavo Guzman Solis

 154

Educational Non-visual Environment for Symbolic
Programming of Cartesian Motion to include Children

with Visual Impairment into Robotic Sciences

Francisco J. Ruiz-Sanchez, Enrique Mireles-Rodriguez, Gustavo Guzman Solis

Grupo de Robótica y Manufactura Avanzada, CINVESTAV-Saltillo, México
fruiz@cinvestav.mx

Abstract. Robotic Sciences, as a fundamental research area in modern technology,
is an attractive opportunity for professional-fulfilment that must be instilled from a
young age. Unfortunately, teaching and didactic material are mainly visual, exclud-
ing blind or partially sighted children of an early inclusion in robotics that results
in a critical disadvantage with respect to their peers in the labor market. In this
paper, we present a non-visual programming environment for visual impaired chil-
dren. This environment is designed to foster the ability of coding motion tasks by
teaching basic concepts of programming with an experimental reinforcement. The
environment is a robotic platform for Cartesian motion with a block-programming
interface and its didactic strategy of gradual complexity. We introduce a symbolic
language of the egocentric Cartesian movements and we describe its implementa-
tion for visual impaired users as safe and friendly tokens with tactile images and
auditory assistance. The programming interface includes a set of assembling tokens
and a desk-board with multi-ports to connect strings of tokens coding algorithms.
The sequence of tokens in a string is identified and verified before being sent to the
robot platform, introducing the users into the general process of coding and debug-
ging. The environment is implemented as a centralized network with a main com-
puter and branches of master-slave microprocessors in a wireless connection for
the robot. We broadly describe the didactic strategy to teach the basic concepts of
programming using the environment and we conclude showing its final implemen-
tation.

Keywords. Accessibility to Disabled Users, Blind inclusion in Robotics, Educa-
tional non-visual programming interface, Robotics for visually impaired

1 Introduction

Robotic Sciences are a fundamental multidisciplinary approach in Modern Technology.
They are interested in the formal study of intelligent automated mechanisms, controlled
by electronic devices, and their interaction with humans [1]. Their study requires of a
spatial perception of the mechanical motion and the ability to describe it in terms of an-
alytic and logic tools whose learning must be instilled from young age to allow a proper
mental representation of the motion in the space and an abstract capacity to describe mo-
tion tasks as algorithms.

 155

Children are encouraged to be involved in Robotic activities since their early education
by means of ludic platforms (Cobetto by Primo Toys, Coding Awbie by OSMO, Kick-
starter by Algobrix, Lego Boost by Lego, etc.). These platforms are composed of a sym-
bolic programming interface of basic movements or actions, and a safe robotic device,
either real or virtual, in a structured environment. The robots perform actions, mainly
related to Cartesian movements, whose description and control in terms of instructions
allows an intuitive understanding of coding algorithms even before the children acquire
their first reading skills. Unfortunately, these platforms are mainly visual hampering the
participation of blind or partially sighted children in conventional courses [2] [3].

Developers and researchers visually impaired regret the lack of non-visual didactic ma-
terial in their early years of their education. They consider that would had been very
appreciated to develop their abilities before their middle and high school years. The lack
of teaching material that translates graphical information in alternate formats accessible
to blind students, forces them to wait until College to receive a formal education in Ro-
botics and Computer Sciences; demotivating their interest in these areas (less than 4 %
of the total number of freshmen with visual impairments are engaged in computer sci-
ences [2][4]).

Visual impaired people develop alternative sensory capacities that have been used to de-
sign assistance devices for the daily living activities [5][6]. Nowadays, modern techno-
logical paradigms provide the means to enhance the use of these capacities by multisen-
sory interfaces that translate visual information into auditory/tactile images [3]. These
interfaces allow the transmission of scientific information, inherently visual, and encour-
age the participation of visual impaired people in Science and Technology. Braille and
tactile displays, together with auditory word processors, already provide the basic inter-
action tools to get involve with the use of computers [7]. Nevertheless, the ability of
coding algorithm requires knowledge and comprehension of the abstract concepts and
structures of programming and, when they are applied to describe robotic tasks, this
knowledge is strongly related to the perception of motion and its representation with re-
spect to its environment.

In this paper, we present a programming environment for children with visual impair-
ments, conceived to teach the basic concepts of coding in robotics with an experimental
reinforcement. It is aimed to foster the abstract ability to code algorithms stimulating the
spatial orientation. The environment is composed of a non-visual programming interface
of symbolic language, a robotic platform for Cartesian motion, and a didactic learning
strategy of gradual complexity. The interface is a block-programming interface of a
graphic language, implemented with assembling tokens of tactile and auditive images,
describing the basic egocentric movements and actions in a mobile robot. It provides of
a non-visual multi-port desk-board to connect the sequences of tokens, or programs, with
auditory assistance to help the user in the process of coding and debugging, before exe-
cuting the program in the robot. We describe the conceptual idea of the programming
environment and discuss its designing characteristic concerned with visually impaired
users and the way it can be used in a didactic strategy to teach the basic concepts of

 156

programming, and we show its final implementation.

2 Educational Non-visual Programming Environment

The proposed non-visual programming environment is a robotic platform with a pro-
gramming interface designed for blind and visually impaired children. It is aimed to teach
the basic concepts of programming by coding Cartesian motion tasks regarding the im-
portance of the motion perception in Robotics (Fig. 1).

Fig. 1 Non-visual robotic environment for Symbolic Programming of Cartesian 2D motion.

2.1 Programming Interface

The programming interface is a non-visual interface for block programming with audi-
tory assistance. It is implemented using assembling tokens describing commands of the
basic Cartesian movements and the number of times they are executed. The programming
interface also includes a multi-ports desk-board as a working space to connect pro-
grammed algorithms as string of tokens with auditory assistance to code and debug the
program before being sent to the robotic platform (Fig. 1).

2.1.1 Command Tokens for Block Programming

Tokens in the programming interface define the commands and their modal attributes for
the block-programming interface. They describe the basic Cartesian movements in a
plane from an egocentric frame of reference (a natural description of motion for blind
persons) and determine the number of times a movement is executed.

Commands are represented graphically by intuitive symbols based on arrows that can be
easily interpreted by kids even before they acquire reading skills. For instance, a straight
arrow pointing in the forward direction with respect to the user, for the command step

 157

forward, and curved arrows pointing to the left or to the right, for the commands turn left
and turn right, respectively (Fig. 2).

Fig. 2 Command Tokens: CAD design and instrumented 3D printed tokens.

Beside the basic Cartesian movements, or primitive commands, in the programming lan-
guage, tokens can also represent two programming structures: subroutines or composed
commands, and conditional actions executing a subroutine regarding the state of the sys-
tem in the environment, both described by a stylized "S" and a vertical diamond recalling
the conditional symbol in the flow charts, respectively. These symbols were designed for
easy visual and tactile identification thinking on the users and on their instructors. With
this concern, it is important to remark that blind children do not necessarily interpret these
symbols in the same way as sighted people interpret them visually, thus the symbols were
designed to be easily identified in a tactile inspection and the users are required to re-
member them and their associated actions.

Tokens are identified by the graved symbols on high relief in its upper surface that also
include, at their left side, a Braille letter indicating the command -a (step forward), i (turn
left), d (turn right), s (subroutine), c (conditional)-. In addition, tokens are provided of a
small switch in the lower right side of the symbol as a tactile way to change modal func-
tion of the command. The switch, provided with an auditory assistance, modifies and
indicates the number of times the command is executed, and, identifies the right orienta-
tion of the token.
Tokens are specially designed for a safe manipulation by children and, besides the tactile
recognition, they are identified by colors to help the instructors and therapists when as-
sisting a user. They are designed with a cover for identification and a generic base for
support and connection. This last instrumented with a microprocessor to improve their
functionality given the possibility to include further sensory aids for the user.Tokens were
manufactured in a 3D printer (Fig. 2).

2.1.2 Multiport Deskboard

The desk-board of the programming interface is an ergonomic multi-ports area to connect
the strings of assembled tokens. Ports are identified in a similar way as the tokens, de-
noting either program lines or subroutines by the letters L or S, respectively, including

 158

the Braille identifier (Fig. 3). The L-ports recognize the connected string of tokens as the
lines of the main program where commands are interpreted from the left to the right and
ordered from L1 to L3. The S-ports are for subroutines, either to host special sequences
of commands in the program or alternative actions triggered by the conditional com-
mands. The use of multi-ports distributes long sequences of commands in short strings.
This limits the required working area into a safe region at the fingertips in front of the
user avoiding unwilling collisions with arms and elbows in a non-visual manipulation.

Fig. 3 Multi-ports desk-board: CAD design of the ports and desk-board

The multiport desk-board, in its left side, provides a small tactile display of the Cartesian
plane and a control panel. The Cartesian display allows the user to identify the starting
and final points in a motion task (home and goal), in order to determine the sequences of
movements required attain un objective. The control panel is a three buttons panel to
start, pause and stop the execution of the program. In this version of the system the Car-
tesian display is passive, but it is considered to provide it with extra sensory information,
to allow a real time interaction with the robot along its motion.

2.1.3 Robotic Platform

The robotic platform is a test-bench of a Cartesian mobile robot in a horizontal plane
which is located physically beside the programming interface, in the left side of the user
(Fig. 1).

The mobile robot is a two-wheel differential drive mobile robot that moves in a step-by-
step motion either to arrive to its next forward position or to turn around its axis to the
next direction. The robot is controlled with an embedded computer in a move-and-wait
mode using infra-red sensors to guide its motion and detect obstacles. It is also provided
with sound signals indicating its position and allowing the user to trace its motion. It is
wireless communicated with the programming interface to receive the program coded by
the user. We provided the robot of a protection cap of rounded corners for protection and
security, also with a high relief tactile and visual images on the upper side of the cover
cap to identify its frontal direction and to orient its motion on the Cartesian space (Fig.
4).

 159

Fig. 4 Robotic Platform: Cartesian mobile robot and the horizontal plane with coded positions.

The Cartesian plane is a horizontal discrete plane of 5x5 locations. This dimension is not
fixed; it can be enlarged by software according to the needs of the teaching strategy. The
plane has landmarks to guide the motion of the robot with a continuous sampling of its
position on the plane. Its dimension (11 cm radius) provides the users of an easy to handle
robot using both hands, and of an acoustic perception of the approximate position of the
robot with respect to the user. This reinforces the coded signals emitted by the robot to
determine its position.

2.1.4 Firmware for Control and Communication

The programming interface is implemented as a distributed system that accomplishes
parallel processes related to the interaction with the user and to the experimental work in
the robot. Its software was developed considering it as a firmware for control the internal
communication in the programming interface, and between the interface and the robot. It
considers a star topology network of connected microprocessors with a central micro-
computer, hosted physically in the left side of the deskboard.

Tokens are instrumented with a microcontroller to identify its function and its recorded
number of repetitions. These microcontrollers are operated in a slave mode and connected
to a master microcontroller located in the ports of the programming interface using a wire
connection. The information of the strings of tokens is sent, via the master microproces-
sor, to a main single block computer where it is processed to identify the contained code.
This code is verified assisting the user to debug and interprete it before being sent wire-
less to the mobile robot as an executable program (Fig. 5).

 160

Fig. 5 Control and Communication network: 1) Lines of program, 2) Master module, 3) Subroutines, 4)

Server Module, 5) Robot Module.

The main computer, among its function of server, also receives the input of the control
panel (start, stop and pause buttons) and send, as an output signal, an auditory assistance
to the user.

3 Symbolic programming of motion tasks

Robotics Sciences are highly concerned with the description and control of mechanical
devices where the perception of motion and its interpretation in a specific context, deter-
mines the ability to code motion tasks in a student. In this way, we consider the problem
of a Cartesian navigation on a horizontal plane as the simplest case of robotic motion and
we use it as a case of study to introduce the basic concept of coding using a symbolic
programming language.

Symbolic Programming introduced by John McCarthy and his group [9] provides a pro-
gramming paradigm that synthesizes complex functions in a simple structure of action
modifiable by some parameters [10], in particular, representing intuitive actions and the
way these actions are executed, without a detailed description of the computing steps
processing input data to get the desired result. This concept allowed the emergence of
computing language for children where natural and intuitive actions are easily described
by common words (or images) and numbers, and thus, providing a friendly didactic tool
to teach the basic concepts of programming.

 161

3.1 Basic commands for 2D Cartesian motion

On a Cartesian plane with natural numbers as coordinates, the basic actions to move all
along the surface can be reduced to step and turn, and both, considered as commands, are
specified by two attributes of the specific sense of the action, i.e. {forward, backward}
for the step, and {left, right} for the turn. However, given the egocentric perception of
motion in blind students and their preference to move in the frontal direction, we rejected
the {backward} attribute and instead, we defined the composed action {step forward} as
the basic command to produce a displacement, and {turn left} and {turn right} as the
basic command for directional action. Thus, in our proposal we defined the set of basic
commands as {step forward (.), turn left(.), turn right(.)} to control the navigation of a
robot in a step-by-step motion.

The proposed commands for the non-visual programming environment, correspond to
the basic procedures of motion defined in the programming language Logo [11]. Proce-
dures of action and specific attributes of direction are set together in a single command,
and the number of times the action is executed as the modal argument, i.e. step forward
(n):= repeat n [fr 1], turn left (n):= repeat n [lt 90°] and turn right(n):= repeat n [rt
90°]. This description of the basic motion actions is intuitive and allows a simple repre-
sentation of the commands as graphic images using arrows that simplifies their identifi-
cation and implementation in a tactile/auditory format of symbols (Figures 2 and 6).

Fig.6 Symbolic programming of motion: Basic, subroutines and conditional commands, and an example of
symbolic program and its equivalent program expressed as list of instructions.

3.2 New composed commands of a sequence of basic actions

In a coded algorithm, a sequence of basic actions can be executed repetitively with a self-
meaning. This sequence can be grouped under a new command that synthesize its general
action in a single call whose definition can be complemented using modal attributes.
The synthesis of new commands is a main concept in structured programming that sim-
plifies the general structure of the programs and optimizes their coding. We introduce

 162

this concept of composed commands in our programming environment as the function
subroutine, called as s(.), which is in fact a sub-program executed as part of the main
program (Fig. 6) considered as a single command whose argument determine the number
of times it is executed. This concept develops in the users the ability of coding complex
motion task in a clear and organized structure of growing complexity.

3.3 Conditional actions

The effectiveness in the execution of program can be affected by changing conditions in
the environment, and the program must be adapted to deal with unexpected conditions
by means of a conditional action. This action, seen as a command, verifies a logic condi-
tion before continuing the execution of the program, and according to its value true or
false, continues or executes a new sequence of actions defined in a subroutine. The con-
ditional command is defined as if <condition>, graphically represented by a diamond in
the symbolic language (Fig. 6). In particular, in the conditional command applied to the
motion of a mobile robot in a Cartesian plane, the condition is defined as the possibility
of moving the robot to the next position, either continuing the program if the next location
is free or running a subroutine to avoid an obstacle if the location is occupied (at least
temporary unavailable).

3.4 Coding Symbolic programs

The commands for coding motion actions in a Cartesian plane were defined as a symbolic
programming language for kids susceptible to be represented by graphic images either
visual or tactile, and the sequence of symbols codes an algorithm that can be written in
its equivalent form of a list of instruction. In Figure 6, we illustrate the use of the three
kinds of commands in a simple motion task. Moving the mobile robot two locations ahead
even in the presence of an obstacle. We introduce the code of the symbolic program and
its equivalence in graphic representation, showing its potential to teach abstract program-
ming concepts with tactile images of the proposed non-visual interface.

4 Didactic strategy for teaching the basis of coding

The proposed programming language was created to teach the basic concepts of coding
by means of a didactic strategy based on exercises of growing complexity associated to
a concrete experience of robotic motion. Exercises are presented as challenges to move
the mobile robot from an initial position (home) to a final one (goal) accomplishing a
motion task. They are organized according to the level of abstraction describing the com-
mands presented in the previous section. The users are asked to code algorithms based
on the library of commands to solve the challenges in the programming interface and
encouraged to test them in the robot platform reinforcing the learning process and moti-
vating the kids to continue their training. It is important to remark that the exercises are
also concerned to stimulate the orientation ability of the user allowing to create a mental

 163

representation of the workspace and the effects of egocentric movements in the global
position of the robot.

Fig.6 Example of the growing complexity teaching strategy: series of basic commands, commands and modal

attribute, subroutines, conditional command.

4.1 Primitive Commands: Basic commands and its modal
arguments

We start teaching the concept of function and its arguments by moving the robot from
one point to another in the Cartesian space. The aim is awake the capacity to describe a
repetitive action by the abstract idea of the action itself and the number of times it is
executed.

The user is asked first to trace a straight-line trajectory in a step by step sequence of
actions, either in a frontal or a lateral direction, i.e., indicating explicitly by repeating the
command the same number of times the command is executed. Then, introducing pro-
gressively in the desired trajectory changes in direction to stimulate the spatial orientation
with respect to an absolute referential frame and finally, optimizing the code by reducing
the number of calls to the command and determining the number of times it is executed
by means of the argument (Fig. 6).

4.2 Subroutines: composed commands

New functions, defined as sub-programs executing specific actions, are introduced pro-
posing motion task that repeat a sequence of actions to be accomplished. We take ad-
vantage of some of the programs developed in previous level to propose partial motion
goals integrated as subroutines, whose definition develop the capacity to recognize com-
mon procedures for optimizing the code. In Figure 6, we show a simple motion task de-
scribing a round trip, starting and concluding at the same point, calling twice a subroutine
defined as the function to go from one side to the other in the Cartesian plane.

 164

4.3 Decision making: conditional commands

Decision making, with logic commands, is taught by means of motion tasks that can be
realized, either partially, in different ways. In particular, the conditional subroutine de-
termines an alternative solution when the conditions of the environment prevent the sys-
tem to continue the normal execution of an algorithm. The alternative solution starts run-
ning when the conditional command detects the state of the condition as true and resumes
the algorithm after the unexpected conditions is surpassed. In Figure 6, we present the
example of obstacle avoidance if the frontal place is occupied. After avoiding the obsta-
cle, the system regains its normal execution to attain its goal.

5 Final Implementation of the Programming Environment

The final implementation of the Programming Environment is showed in Figure 7. To-
kens and ports were manufactured in a 3D printed using ABS material of different colors
for easy identification, and they were instrumented with Atmega32 microcontrollers.
Color and visual symbols were implemented to help the instructors and therapists to use
the system and to assist the blind and visual impaired users when using the environment.
The body of the programming interface was made in acrylics considering the multi-ports
desk board in its right side, and a host place for the computing elements in the left side,
under the reference Cartesian display (Fig. 7).

Fig.7 Images of the final implementation of the programming environment showing the non-visual program-
ming interface and the robotic platform.

 165

The mobile robot is an AlphaBot2 by Arduino moving in a horizontal plane of 5x5
squares. The plane is implemented in a white Eva Foam surface where the Cartesian po-
sition are marked in a black digital code to guide the motion of the robot using the lower
matrix of infrared sensors included in the robot.
The Firmware of the environment was developed with the Arduino open-source C/C++
libraries using a Raspberry Pi as a main single block computer communicated to the mas-
ter and slave microcontrollers by a serial I2C protocol or to the mobile robot by a Blue-
tooth transmitter.

6 Conclusion

In this paper, we presented the design and implementation of a didactic platform to in-
clude children with visual impairments in robotics. It is intended to foster the ability of
coding abstract algorithms from specific motion tasks and, implicitly, to stimulate the
spatial orientation in a global frame of reference as the result of a sequence of egocentric
movements. The platform provides a non-visual programming environment composed of
a tactile/auditive programming interface and a robotic test-bench for experimental rein-
forcement.
The design and implementation of the non-visual interface imposed the challenge of cre-
ating a practical device, intuitive and interesting enough, for children with visual impair-
ments, i.e., provided of non-visual information, perceptible and understandable for visual
impaired users, and friendly for the instructors that assist the users. For instance, tokens
are marked with colors and visual/tactile images of symbols representing the basic ego-
centric movements in a Cartesian plane easily identifiable either by touch or by sight.
Their size and form, cubic with rounded edges, and their parallel connectors respond to
requirements detected of safety and easy manipulation for visually impaired children.
Tokens implemented with microcontrollers offers the possibility of a better interaction
with the user by means of the hardware already available in the market to enhance the
sensory information provided to the users. In this work we presented the use of these
microprocessors to determine the number of times the command is repeated; however,
this functionality can be expanded to describe the motion of a more complex devices
beyond the motion of a mobile robot in the plane, for instance of a manipulator in its
articular space.
Currently the prototype is tested by volunteers before being used in a classroom, the re-
sults will be presented in future works. It is important remark that the proposed program-
ming environment is designed for children with visual impairments; however, its concept
as a didactic material is useful in general to introduce children in Robotic Sciences during
their first years of education.

Acknowledgement

This work has been supported by Industrias Plásticas Martin and Cinvestav-IPN under
the grant 1er premio innovación y diseño de juguetes 2017. The authors are indebted with

 166

the instructors of the Centro Atención a la Discapacidad y Rehabilitación Integral for
their comments and advise.

References

[1] K. Rajan and A. Saffiotti, “Editorial: Towards a science of integrated AI and Ro-
botics”, Artificial Intelligence no. 247, Elsevier, pp. 1-9, 2017.

[2] A. M. Howard, Ch H Park and S. Remy, “Using Haptic and Auditory Interaction
Tools to Engage Students with Visual Impairments in Robot Programming Activi-
ties”, IEEE Transaction on Learning Technologies, vol. 5, No. 1, pp 87-95, January-
March 2012.

[3] N. M. Al-Ratta and H. S. Al-Khalifa, “Teaching Programming for Blinds: A Re-
view”, Forth International Conference on Information and Communication Tech-
nology and Accessibility (ICTA), Hammamet, Tunisia, 2013.

[4] B. Beck-Winchatz and M. A. Riccobono, “Advancing participation of blind stu-
dents in Science, Technology, Engineering, and Math, Advances in Space Research,
no. 42, pp. 1855-1858, 2008.

[5] P. W. Nye and J. C. Bliss, “Sensory Aids for the Blind: A Challenging Problem
with Lessons for the Future”, Invited paper, Proceeding of the IEEE, vol. 58, No.
12, 1970.

[6] J. Liu and X Sun, “A Survey of vision Aids for the Blind”, Proceedings of the 6th
World Congress on Intelligent Control and Automation, Dalian, China pp.4312-
4316, 2006.

[7] V. G. Chouvardas, A. N. Miliou, M. K. Hatalis, “Tactile display: Overview and
recent advances”, Displays, Elsevier vol. 29, pp. 185-194, 2018.

[8] J. McCarthy, “Recursive Functions of Symbolic Expressions and Their Computa-
tions by Machine, Part 1”, Communication of the ACM 3:4, pp 184-195, April
1960.

[9] D. S. Touretzky, “COMMON LISP: A Gentle Introduction to Symbolic Computa-
tion”, The Benjamin/Cummings Publishing Company, Inc., 1999.

[10] S. Delaney, “A Very Basic Introduction to MSW Logo Programming, http://sean-
delaney.com/wp-content/uploads/2012/01/A-Very-Basic-Introduction-to-Logo-
Programming.pdf, 2012.

 167

