
Modeling Lessons in Classical Ballet through Petri Nets

Adriano Baratè1, Luca A. Ludovico1, and Andrea Piermattei2

1 Laboratorio di Informatica Musicale

Dipartimento di Informatica, Università degli Studi di Milano

{adriano.barate, luca.ludovico}@unimi.it
2 Corpo di Ballo del Teatro alla Scala

andrea.piermattei@balletto.net

Abstract. Petri nets are a mathematical modeling language for the description

of distributed systems. They are particularly effective to provide a synthetic,

multi-layer graphical representation of processes, unveiling aspects such as iter-

ative structures and concurrency. This paper aims to apply Petri nets to the for-

malization of a typical lesson in classical ballet. After analyzing the basic prin-

ciples and the commonly accepted rules to structure a ballet class, we will de-

fine a net model that can be conveniently modified by changing either its initial

marking or the network topology in order to take into account factors such as

lesson duration, the age and skill level of dancers, etc. Such a model can be

adopted also to automatically produce a lesson structure with customized fea-

tures, as demonstrated by the final case study.

Keywords. Ballet class, modeling, Petri nets

1 Introduction

Modeling a complex activity such as the design, structuring and execution of a gener-

ic ballet class is a challenging matter. First, there is not one commonly-accepted les-

son structure, but rather a number of methods and schools, each with their own set of

habits, practices and accepted rules. In addition, a ballet class can address a heteroge-

neous target, ranging from the young student to the professional dancer. Finally, there

are requirements and restrictions that have a practical origin: the duration of the les-

son, the number of participants, the type of skills to be developed, etc.

In this extremely heterogeneous field, we have to focus on some practices that may be

considered standard, thanks to the endorsement of experienced teachers and profes-

sional dancers. The goal is to determine a generic reference model, as close as possi-

ble to commonly-accepted practices, and to identify a set of variables able to adapt the

model to different use cases.

A major issue is the choice of a suitable modeling tool, so that the resulting models

can be descriptively effective, flexible enough, and understandable also by non-

experts. As explained in the following, a good solution is the adoption of Petri nets, a

formal tool to describe processes through a graphical representation easy to produce,

mailto:luca.ludovico%7D@unimi.it
mailto:andrea.piermattei@balletto.net

read and modify.

Before getting to the heart of the subject, it is worth explaining the meaning of this

proposal. Models are typically approximations of real situations, often presenting

variations and nuances to be preserved and emphasized rather than flattened. In this

case, the modeling goal is even harder, since there is no agreement about a common-

ly-accepted structure for a ballet class, as illustrated in some detail in the next section.

Nevertheless, efforts in this sense can produce interesting results:

 It is possible to discover similarities among different methods and schools;

 Thanks to the characteristics of Petri nets and their graphical representation,

it is easy to modify models and study their behavior;

 The resulting models can be employed in ballet-oriented recommender sys-

tems and training applications, in order to automatically build user-tailored

exercises and lessons.

This paper is structured as follows: Section 2 illustrates the main training systems in

use in classical ballet and provides some links to literature; Section 3 discusses the

characteristics of the typical structure of a ballet lesson; Section 4 presents a short

overview about Petri nets, giving details about terminology, syntactic elements, and

evolution rules; Section 5 shows a multi-layer model for a ballet class; finally, Section

6 addresses the issue of model customization and provides some clarifying examples.

2 Classical Ballet Training Systems

There are several standardized, widespread, classical ballet training systems, often

named after their creators, and called methods or schools. The two prevailing systems

from Russia are the Vaganova method by Agrippina Vaganova [1] and the Legat

method by Nikolai Legat [2]. In Italy a widespread training system was developed by

– and named after – the Italian dancer Enrico Cecchetti [3]. Another relevant example

is the Royal Academy of Dance (RAD) method, collectively created by a group of

ballet professionals and currently used in more than 70 Countries [4,5]. French ballet

has no standard method: the major ballet schools employ their own training system, as

for the Paris Opera Ballet School, Conservatoire National Supérieur de Musique et de

Danse, and Académie de Danse Classique Princesse Grace. Finally, as it regards the

United States, it is worth mentioning the School of American Ballet created by

George Balanchine, who significantly contributed to the modernization of ballet [6].

In any case, the strong geographical and cultural roots of the mentioned methods have

not prevented them to overcome national borders and become internationally-

recognized teaching standards.

Quite surprisingly, even if each training system has been designed to produce unique

aesthetic qualities and technical skills from its students, there is a general agreement

about the type and sequence of exercises characterizing the typical ballet class. In the

following, we will adopt the lesson structure currently in use at La Scala Theatre Bal-

let School, briefly described in Section 3.

As it regards glossary, since ballet became formalized in France, a significant part of

terminology is in the French language. The most relevant terms for the comprehen-

sion of this work will be defined and shortly explained the first time they appear in

the text. For further details, such as the meaning of other terms, cross-references and

translations into other languages, please refer to [7], [8], and [9].

3 Lesson Structure

In this section we will describe the structure of a ballet class according to the training

method in use at Teatro alla Scala of Milan, Italy. Even if this approach is substantial-

ly rooted in the Vaganova method, most exercises can be considered standard and are

commonly performed also in other schools, in the same or a similar order.

We aim to provide a multi-layer description of such a structure, adopting a top-down

approach, namely moving from the highest level of abstraction (the whole lesson) to

the lowest one (how single pieces can be built as sequences and repetitions of music

fragments). The resulting structure is made of multiple layers, and each layer can be

seen as a detailing of the one immediately above.

As it regards the highest level, a dance lesson can be basically divided into two main

parts. At first, dancers are attached to the barre, namely a sturdy horizontal bar –

approximately waist height – used for warm-up and stretching activities. A common

sequence of exercises proposed in the first phase is: deux mains à la barre, pliés, ten-

dus, jetés, ronds de jambe, fondus, frappés, ronds de jambe en l'air, adages, grands

battements, and finally stretching exercises.

The second stage takes place with dancers detached from the bar. This part can be

further divided into:

 Center – Training activities are performed in the middle of the rehearsal

room. The typical sequence of exercises is: petits adages, tendus, jetés, ronds

de jambe, fondus, grands adages, grands battements, pirouettes, grands pir-

ouettes;

 Jumps – This part of the lesson includes petits sauts, moyens sauts, and

grands sauts (i.e. small, medium and great jumps respectively);

 Great turns – The coda, namely the concluding segment of the lesson, often

contains virtuosity exercises, such as manege de jettés, manege de piquet,

fouettés, pirouettes a la seconde, etc.

All the mentioned exercises are usually performed for each leg en dehors (implying a

clockwise circle for a right working leg and a counter-clockwise circle for the left

one) and en dedans (i.e. a clockwise circle for the left leg, and a counter-clockwise

circle for the right one). This can be achieved either using two short pieces, or a single

one with a double number of beats.

Each exercise type could be described in detail as it regards its technical and aesthetic

goals, but a complete discussion of this subject would go clearly beyond the scope of

the present work.

In summary, the division of a lesson in successive stages can be seen as the top level

of abstraction, whereas the inner composition of each stage – namely the sequence of

exercises and their repetitions – represents the intermediate one.

Now, let us describe the lower level of abstraction. Exercises can be customized by

the dance teacher to adjust their length according to the training goal. The number of

beats is typically a power of 2 (e.g., 16, 32, 64, 128, etc.) or a sum of powers of 2

(e.g., 48, 96, etc.). A common way to build a variable-length music piece is the ag-

gregation and repetition of shorter cells, called fragments, properly organized in a

musical continuum. The inner structure of a music piece is the last level that we want

to unveil and describe in our multi-layer model.

A trivial example of a variable-length exercise could be composed by an initial 16-

beats intro followed by a variable number of repetitions of the same 16-beats frag-

ment, called A. The resulting sequences are:

 intro, A (32 beats);

 intro, A, A (48 beats);

 intro, A, A, A (64 beats);

 …

A more complex example can be produced with an initial 16-beats intro followed by

other 16-beats fragments named A, B, and C, variously arranged to improve the musi-

cal result and to avoid a sense of repetitiveness:

 intro, A (32 beats);

 intro, A, B (48 beats);

 intro, A, B, C (64 beats);

 intro, A, B, C, A (80 beats);

 intro, A, B, C, A, B (96 beats);

 intro, A, B, C, A, B, C (112 beats);

 intro, A, B, C, A, B, C, A (128 beats).

Modular structures like the ones described above allow the dance teacher to select the

most appropriate length for each exercise. For example, in the latter case – with the

metronome set to 120 BPM – it is possible to generate a piece whose duration chang-

es noticeably, ranging between 16 seconds and 1 minute and 4 seconds. It is worth

noting that the revelation of the inner structure of a piece could provide also an effec-

tive method to compress information.

For instance, if the music for the ballet class is in the form of already-available audio

tracks instead of being performed on the fly by a piano player, then the availability of

independent fragments will produce a double benefit, in terms of both modularity and

space occupation: it is sufficient to have a unique audio track equipped with ad hoc

markers – or alternatively the recording of each fragment alone – to compose a se-

quence of any kind and duration. Some clarifying examples will be presented in Sec-

tion 5.

4 A Brief Introduction to Petri Nets

A Petri net is an abstract and formal model to represent the dynamic behavior of a

system with asynchronous and concurrent activities [10].

Petri Nets consist in a set of basic objects: places, transitions and arcs, whose graph-

ical representations are circles, rectangles, and oriented lines respectively. Both places

and transitions are called nodes.

 Fig. 1. An example of Petri net.

In Figure 1, an elementary Petri Net is shown. P1, P2, P3, P4 are places, T1, T2, T3

are transitions, and the oriented lines represent arcs. An arc can connect only nodes of

different kind, i.e. places to transitions and vice versa. The number possibly associat-

ed to arcs is called arc weight, and its meaning will be explained soon. When not

specified, the default value for arc weight is 1.

A key concept for Petri nets is the idea of marking, implemented through the meta-

phor of tokens. At a given time, any place holds a non-negative number of tokens,

graphically indicated by the upper value inside the circle. The lower value indicates

place capacity, i.e. the maximum number of housed tokens.

Tokens can be transferred from place to place according to policies known as firing

rules. The dynamic evolution of a Petri net is determined by the following rules:

 A transition is enabled when all the incoming places of that transition present a

number of tokens greater or equal to the weights of the corresponding incoming

arcs, and – after the fire of the transition – the marking of all the output places will

be less than or equal to their capacities;

 When a transition is enabled, the fire drops from the incoming places a number of

tokens equal to the weights of the incoming arcs and adds to each outgoing place a

number of tokens equal to the weights of the corresponding outgoing arc.

Fig. 2. The left part shows a net where transition T1 is enabled, i.e. it is ready to fire; the right part illus-

trates the new marking of the net after the fire. Please note that tokens have not been transferred, rather
consumed in input places and created in output places in accordance with arc weights.

Another important concept is refinement, a simple morphism that allows the decom-

position of complex Petri Nets into simpler ones thanks to the adoption of subnets.

Subnets are very important for our work, since a multi-layer structure like the one

described in Section 3 can be described in a compact and effective way through the

use of multiple refinements, as shown in the following figures.

For the goals of this work, the need arises to introduce some standard extensions of

Petri nets. Since they are well known in literature, please refer to the provided refer-

ences for a formal description of such extensions and their properties.

First, the original theory of Petri nets intentionally does not model time; consequently,

when a transition is enabled, there is no time constraint that forces it to fire immedi-

ately. Conversely, in the approach presented below we need to describe not only the

structure, but also the timing of the model. In order to manage these cases, timed Petri

nets have evolved, where there are places and transitions that are timed and others

which are not [11]. In our model, places will be timed.

Another extension, known as stochastic Petri nets, lets us introduce non-determinism

through adjustable randomness of the transitions [12]. Our model uses a “light” ver-

sion of this feature, mainly to sort concurrent enabled transitions. To this purpose, we

define the concept of probabilistic weight associated with an arc. Our definition states

that, when many transitions are enabled to fire, the probability of choosing one specif-

ic transition can be calculated as follows:

 If all the enabled transitions have all the input/output arcs with probabilistic

weights equal to 0, the first transition to fire is chosen randomly;

 If at least one of the enabled transitions has a probabilistic weight of the in-

put/output arcs greater than 0, the probability of choosing one specific transi-

tion to fire is the sum of its input/output probabilistic weights divided by the

sum of all the input/output probabilistic weights of all the enabled transi-

tions.

The probabilistic weight is used in this work when: i) two or more transitions are in

alternative, but ii) we want to follow a specific path until a particular event occurs.

To accomplish this, the last transition to fire must have all the input/output arcs with

probabilistic weights equal to 0. The transition with a probabilistic weight set to 0 will

fire only when all the other transitions are no more enabled due to their marking. In

the figures below, probabilistic weights will be enclosed in square brackets.

5 The Multi-Layer Model

In this section we present the 3-layer model of a standard ballet class through timed

and probabilistic Petri nets. The concept of refinement provides a clear and intuitive

way to describe the relationship among layers and to clarify their different degree of

abstraction.

In the model we will assign two different roles to places: places that are associated to

actions to be performed (e.g., “start the lesson”, “play a music piece”, “insert a

break”, etc.), and places whose aim is only to properly enable/disable transitions (e.g.,

“count the repetitions”). In the figures below, action places are represented through

white circles and counter places through smaller grayed circles.

Places of the former kind correspond to timed slots of a lesson. The meaning of a slot

changes from layer to layer: at the lowest level, it can be a subpart of a music piece –

and in this case it takes the time required to play the loop – as well as the break be-

tween the execution of two exercises; at the highest level, a slot corresponds to the

total timing of a group of exercises. When a transition fires and puts tokens into this

kind of places, the execution of the associated action starts immediately and goes on

for the whole duration of the slot. Only after the slot’s time has run out, the conditions

to trigger the subsequent transitions are evaluated, and in case of success enabled

transitions fire immediately.

Even if not associated to any practical action, the role of the latter kind of places is

fundamental to confer a given structure to the model. Counter places are used to

properly enable/disable transitions, and their marking – i.e. the number of contained

tokes – can be modified also on the fly to modify the lesson structure, as detailed in

Section 6.

Now let us describe the model in detail using a top-down approach. The top layer,

shown in Figure 3, is a trivial Petri net with a linear structure. This macro-

segmentation of the lesson contains only action places. The stage when dancers are

detached from the bar (Middle) could be refined into the 3 subparts described in Sec-

tion 3 – i.e. center, jumps, and great turns – but it would be only a different division

of the top layer that does not introduce a different degree of abstraction in the model.

Fig. 3. The Petri net describing the top layer of the model.

The middle layer, shown in Figure 4, provides an insight on the sequence of exercises

that compose each macro-section of the lesson. Once again the resulting Petri net is

basically a linear sequence of action places, in this case associated with the perfor-

mance of a complete exercise (or potentially to a break between exercises), but the

presence of counter places allows to set the number of repetitions for each exercise,

thus providing a first aspect of flexibility to the model.

Fig. 4. The Petri net describing a part of the middle layer, namely a refinement of the Middle place.

Finally, the lowest layer addresses the detailed description of an exercise in terms of

music fragments to mount in order to produce a target piece. Each music piece pre-

sents its own characteristics, and only a thorough knowledge of the repertoire allows

to suitably segment a score so as to obtain a satisfactory result as it regards both the

musicality and the technical goals of the exercise. This is a typical ability of a skilled

piano player used to accompany ballet training.

In Figure 5 we present the models of some standard sequences strongly rooted in the

piano repertoire for ballet classes. Such models are the formalization in terms of Petri

nets of the examples mentioned in Section 3. At this level of detail, probabilistic

weights are used to manage repetitions. In Figure 5 we have used generic weights,

labelled [wn], initialized to 0 before the first firing. During the net execution, these

values can be set to a positive value and the weight of concurrent arcs to 0, thus stop-

ping the loop before its natural end determined by the consumption of tokens in coun-

ter places.

Fig. 5. The Petri nets describing the models of some pieces.

The upper structure shown in Figure 5 allows the generation of pieces organized as

follows:

 intro, A, coda;

 intro, A, A, coda;

 intro, A, A, A, coda;

 intro, A, A, A, A, coda;

 intro, A, A, A, A, A, coda;

 intro, A, A, A, A, A, A, coda.

If no value is set for the probabilistic weight [w], T2 and T3 have the same probability

to fire, until the last token in the counter has been consumed. Vice versa, if [w] is

initially set to 0, place A will be executed 6 times. If [w] is changed on the fly, the

number of iterations is changed accordingly.

Similarly, the other structures shown in Figure 5 present additional arc weights that

allow to jump to coda on demand. The second model allows the generation of the

following combinations:

 intro, A, coda;

 intro, A, B, coda;

 intro, A, B, A, coda;

 intro, A, B, A, B, coda;

 intro, A, B, A, B, A, coda;

 intro, A, B, A, B, A, B, coda;

 intro, A, B, A, B, A, B, A, coda.

Finally, the lower part of Figure 5 provides the following combinations:

 intro, A, coda;

 intro, A, B, coda;

 intro, A, B, C, coda;

 intro, A, B, C, A, coda;

 intro, A, B, C, A, B, coda;

 intro, A, B, C, A, B, C, coda;

 intro, A, B, C, A, B, C, A, coda.

For the sake of clarity, you can refer to the music pieces offered by Ballet Class, a

free app for individual ballet training available on iOS and Android marketplaces.

Thanks to the cooperation with experienced pianists from La Scala theater, in Ballet

Class audio tracks are not saved in all their variants, rather music pieces are built on

the fly by joining shorter audio fragments in accordance with the number of beats

selected by the user. Even if Ballet Class engine does not parse Petri nets, it intrinsi-

cally adopts the same approach. Specifically, the first model in Figure 5 corresponds

to the structure of the piece “Tendus d”, the second model to “Jetés C”, and the third

model to “Frappés c”.

6 Customizing the Model

In this section we briefly outline the possibilities offered by a customization of the

model. In Section 1 we have underlined the importance of flexibility in order to adapt

the model to real situations and specific educational targets. To achieve this result,

Petri nets can be modified to a certain extent also after the formalization of the model.

The initial marking – i.e. the number and position of tokens before the very first oc-

currence of firing – is a key factor that influences the evolution of the net. For exam-

ple, it would be sufficient to add tokens inside counter places and/or properly set

probabilistic weights to change the number of repetitions of a given action (e.g., mul-

tiple executions of the exercise, additional fragments inside a music piece, etc.). Mod-

ifications of net marking can occur on the fly too, thus providing the user with real-

time control over the execution of the net [13]. For instance, a teacher could realize

that the time is running out and the lesson has to be shortened, or conversely that the

current exercise has to be repeated.

A more complex type of modification regards net topology: in this case, the structure

itself can be modified by adding, removing or readjusting elements such as places,

transitions, arcs, weights, etc. By changing net topology, on one side the user could

skip unwanted exercises, insert or delete breaks between pieces, improve the way an

audio track is built; but on the other side, he/she could invert lesson sections, play

multiple audio tracks simultaneously, and erroneously join music fragments belong-

ing to different pieces. Even if this approach is extremely powerful and flexible, it is

also likely to overturn the identified model, and consequently it should be carefully

evaluated.

As a further example of net modification, a certain amount of uncertainty can be in-

troduced, in order to make the lesson experience more varied and less predictable.

This result can be achieved by modifying or ignoring probabilistic weights. For the

iterative structures of our model – where the next-step transition has probabilistic

weight set to 0, so it can fire only after the consumption of all the n tokens in the

counter place – without probabilistic weights the number of repetitions would unpre-

dictably get a value m [1 … n+1].

So far, modifications have been demanded to the user’s arbitrary choices. But if the

model was embedded into a recommender system, an expert system or any other

computer-based device for ballet training, net modifications could respond to well-

defined algorithms and adaptive strategies. For example, by considering the duration

of audio fragments (values known in advance), computing breaks between exercises

(an aspect customizable by the trainee), and taking into account model’s adjustment

strategies (teacher’s expertise embedded into the software environment), the system

could produce a complete ballet class of the desired duration. Similarly, by associat-

ing an average calorie consumption to each audio fragment, it would be possible to

prepare a lesson that involves a given amount of energy consumption. Once again,

modifications could occur even in real time, for example on the base of heart rate or

other parameters read by activity trackers and fitness bands.

In any case, the role of an expert teacher is fundamental both to design the base model

and to plan modification strategies. For example: Which types of exercise can you

suppress if needed? Which pieces can you consider as interchangeable? How can you

shorten a lesson? And so on.

7 Conclusion

In this paper we have outlined an approach for the formalization of a ballet class

through Petri nets. The intrinsic problems due to the lack of teaching and training

standards, the variable structure of a lesson, the different goals each lesson can pre-

sent have been addressed on one side by exploiting the know-how of skilled ballet

teachers and the available literature, and on the other by explaining how the model

can be provided with a certain degree of flexibility.

References

[1] A. Vaganova, Basic Principles of Classical Ballet. Dover Publications, Inc.,

1969.

[2] J. Gregory, The Legat Saga: Nicolai Gustavovitch Legat, 1869-1937. Princeton

Book Co Pub, 1994.

[3] C. Beaumont, and S. Idzikowski. The Cecchetti method of classical ballet: Theo-

ry and technique. Courier Corporation, 2003.

[4] Royal Academy of Dance. The Foundations of Classical Ballet Technique. Royal

Academy of Dance Enterprises Ltd., 1997.

[5] Royal Academy of Dance. The Progressions of Classical Ballet Technique. Roy-

al Academy of Dance Enterprises Ltd., 2012.

[6] T. Scholl, From Petipa to Balanchine: Classical Revival and the Modernisation

of Ballet. Routledge, 2003.

[7] G. Grant, Technical manual and dictionary of classical ballet. Dover Publica-

tions, Inc., 1982.

[8] G. W. Warren, Classical Ballet Technique. University Press of Florida, 1989.

[9] R. Ryman, Dictionary of Classical Ballet Terminology. Dover Publications, Inc.,

1998.

[10] C. A. Petri, “Introduction to general net theory,” Net theory and applications, pp.

1-19. Springer Berlin Heidelberg, 1980.

[11] J. Wang, Timed Petri nets: Theory and application. Springer Science & Business

Media, 2012.

[12] M. A. Marsan, G. Balbo, G. Conte, S. Donatelli, and G. Franceschinis, Modelling

with generalized stochastic Petri nets. John Wiley & Sons, Inc., 1994.

[13] A. Baratè, G. Haus, and L. A. Ludovico, Real-time Music Composition through

P-timed Petri Nets, ICMC|SMC|2014 Proceedings, Athens 14-20 September

2014, pp. 408-415, 2014.

