
Composing and Performing Mixed Electronic Works

Orestis Karamanlis*, Dionysis Athinaios**

*FasmaTwist Co., 12 Turpyn Court, Cambridge, CB4 2RW, UK
o.karamanlis@gmail.com

**FasmaTwist Co., 12 Turpyn Court, Cambridge, CB4 2RW, UK
d.athinaios@gmail.com

Abstract. This paper explores common methodologies and practices for
composing and performing mixed works, involving acoustic instruments and
real-time electronics using a computer. We proceed to describe a strategy for
creating and presenting such works and introduce the CuePlayer, a tool for the
SuperCollider programming language which aids in the organisation of
processes and musical material in bundles (cues). We discuss the implications
from its use with reference to a musical work.

Keywords. Electroacoustic Music, Real-time, Composition, Performance,
Mixed, Live Electronics, SuperCollider, CuePlayer, Cues

1 Practices in Mixed Music

The following text is written from a composer's perspective and dives straight into the
core of the discourse. It assumes awareness of the electroacoustic musical language
and a general understanding of the issues surround its creation and presentation to the
public. For a historical review on issues specifically relating to real-time computer
music see Bevelander (1991), Emmerson (1994, 2000), Risset (1999), Rowe (1999),
Stroppa (1999) and Hagan (2016) amongst others.
Put simply, within the realm of computer music, we understand real-time to involve
processes taking place inside the computer which may generate or modify sound
without any interruption in the musical flow; and live-electronics to involve (possibly
human) performers controlling audio parameters in concert. The absence of an
audience would not change the nature of those works, but since music has this social
dimension of a shared experience it is helpful to think of computer music in a concert
situation. We also understand mixed music to combine both acoustic sources and
electronics, which may be fixed or generated in real-time.
From all the different expressions of electronic music this text explores the
combination of acoustic instruments with electronics, both of which may involve
different levels of indeterminacy. It is common practice for the electronic sound to
range from being fixed on a medium, to being generated/modified in real-time; and
for the instrumental part to range from being freely improvised, to being explicitly
notated on score. All sorts of combinations of the in-between states of the above are

encountered. Still, people working in this genre face a series of challenges when
composing and performing new music:

• How will the instrumental and electronic parts be organised?
• How effectively will the acoustic sources integrate with the electronics?
• How can the piece be auditioned and tested prior to the rehearsal?
• What is an efficient method for presenting a mixed work?
• How easily can the piece be brought to different venues?

These questions represent some of the issues faced by composers (and performers) of
mixed music, and there are many different answers. It is not unusual for individuals to
invent their own solutions depending on the requirements of each piece. We will now
consider some specific scenarios according to how fixed the acoustic and electronic
parts appear to be.

1.1 Fixed Electronic Sound / Fixed Instrumental Part

The approach of having the electronics pre-recorded on a medium and the
instrumental part explicitly notated on score immediately solves the problem of
organisation from a technical point of view. Considerations on fusion and contrast,
cause and effect relationships, growth and expectation are always present but are
purely aesthetic. From a strictly technical point of view there is little doubt as to how
the piece will be prepared and executed. The electronic sound is most often sequenced
within a digital audio workstation and exported in a single or multiple audio files. The
instrumental part is conventionally or graphically1 notated on paper or stored in a
digital file. The main worry is how well the electronics will integrate with the
instruments and how the two will coordinate during the concert. The latter is usually
solved via the use of a prepared click-track (usually fed to the performers via in-ear
monitors) and a stop-watch showing the time elapsed since the beginning of the piece.
Evaluating how effectively the acoustic sources integrate with the electronics is a
more difficult task. This is often tackled with the use of sampler instruments, often
controlled via Midi keyboards during the compositional process, which imitate their
acoustic cousins.
Works of such format do not pose great difficulties in concert situations and are
characteristic of the 1980s when computers and programming languages were not
powerful enough to work in real-time. They can be realised in the studio, taking time
to fine-tune different aspects of the piece and then be presented without substantial
technical obstacles to the audience. The critique usually centers on the fixness of the
electroacoustic sound (what is often called the tape-part). McNutt (2003) suggests
that ‘for the player, performing with fixed accompaniment is like working with the
worst human accompanist imaginable: inconsiderate, inflexible, unresponsive and
utterly deaf’. A more flexible approach for the electroacoustics is to divide the entire
piece in sections and prepare individual sound-files (cues) to be triggered on specific

moments which are marked up on the score, thus allowing for some temporal freedom
to the performer between sections. We return to this idea later.

1.2 Fixed Electronic Sound / Improvised Instrumental Part

Some or all of the instrumental part may be improvised, freely, following a series of
instructions, or an open score like Cornelius Cardew's (1967) Treatise. In this
instance the composer is usually uninterested in explicitly controlling the sound-world
of the acoustic instrument. The responsibility is transfered to the performer who, upon
becoming familiar with certain guidelines, executes passages accompanied by the
tape-part, often having freedom within a range of possibilities. Absolute coordination
is rarely desired and the performer may simply keep track of the time elapsed with a
stop-watch.
But what is it that the composer controls in this format? It is certainly not the timbre,
the phrasing, the rhythmic and melodic material of the instrumental part in detail.
S/he functions more as a coordinator, providing a framework upon which a
collaborative artwork can be built. The critique of such an approach lies, on the one
hand, on the fixness of tape, and on the other on this fluidity that exists on
fundamental structural aspects of the work.

1.3 Improvised Electronics / Fixed Instrumental Part

In this scenario the instrumental part may be explicitly scored whereas some (or all)
of the electronics may be improvised. This usually falls under the umbrella of live
electronics, involving a laptopist improvising in front of the audience along with the
instrumentalist. Certain actions may be scored before-hand but that usually does not
change the nature of the electronics, which are generated and manipulated in real-time
by a dedicated performer who is usually the composer.
In this scenario the instrumental part could be constructed making use of a sampler
instrument as described earlier and the improvised electronics may be trialled and
adjusted in the studio. It is often not in the interest of the composer to control in detail
every parameter of the electronic sound, but rather to create a system that allows for
error and uncertainty during the performance, viewing the laptop more as an
instrument as opposed to a play-back engine. The final piece is probably less portable,
making it more difficult for the instrumentalist to practice on his/her own without
having a feedback mechanism to audition the electronics.

1.4 Improvised Electronics / Improvised Instrumental Part

When improvisers (instrumentalists and electronic musicians) perform on stage, we
usually refrain from speaking of composition. If nothing is prepared before-hand but a
series of apparatuses, software and processes, then the musical work is built in

concert through a dialog between the ensemble's members based on spontaneity and
mutual interaction.

1.5 In-Between

Between all the above there is room for many interesting intersections, for works
incorporating pre-composed elements and real-time processing, as well as scored and
improvised instrumental parts. Adding variability and chance to the electronic sound
during the concert is something that many composers embrace, often using
algorithmic processes which have been built beforehand. It is in this format that
computer music programming languages, like SuperCollider, Pd, Max/MSP, ChucK,
etc, have proven to be especially useful. The obvious benefit of using such tools is
that they allow significant amount of freedom for the user to accomplish sophisticated
tasks which may fall outside of what mainstream audio software offers.
Transformations of symbolic musical data are also possible with many computer-
aided composition environments, but this is beyond the scope of the present
discussion2.
With the advent of powerful laptops and music programming languages many
composers nowadays become programmers, sometimes even developing a substantial
background in programming in an effort to realise complex compositional ideas. The
programming skills required can be as important as the purely musical and it is not
unusual for competent composers to struggle with technology while trying to solve
programming issues, devoting time to troubleshoot their software than focus on the
musical qualities of the piece. Still, we regard the creation of software accompanying
the instrumental score as an integral part of the compositional process. This is even
more the case with generative works where a set of algorithms produce ever-changing
musical processes; the piece becomes also the process itself and the composer is a
listener to the result at the end of the chain. But, to a composer who is more
concerned about the actual sound-world, the timbre, the rhythmic and melodic
material and their evolution through time (as opposed to the processes that give life to
the sounds), specialised programming may appear somewhat frustrating. Adding on
top the challenges of structuring, testing and presenting an interactive piece, no-
matter how interesting the process may be, it is often far from being a smooth one.

2 Recipe for Composing & Performing

Many computer music programming languages can be regarded as being equivalent,
in the sense of being able to accomplish the same tasks. The authors have relied
mostly on a text-based dynamic programming language since complex structures can
be represented in a clear way using text. Though it is helpful to see the dataflow
through a patch and quickly interact with a graphic user interface of a visual
programming language, in the long run it may be difficult to work with large number
of objects or more importantly to represent compound sequential processes. We now

demonstrate a compositional workflow using SuperCollider which has proven to be
fruitful in our own research and which may be adaptable to visual programming
languages as well with some effort.
Let us first envisage the composition of a novel work for electronics and one acoustic
instrument, a violin for the sake of simplicity. The electronics run in real-time on a
laptop, incorporate pre-programmed elements and process a live feed from the
acoustic source. The instrumental part is scored, at least partly, via standard notation.
In other words, the majority of the work is not freely improvised and requires studio
time to structure all material in a musically meaningful way.
A trained composer would not have a major difficulty in imagining how a scored
violin part would sound in concert. However, the SuperCollider code would always
need to be tested and auditioned to judge how well it works and integrates. In most
cases it is a good idea to try to create a decent "performance" of the instrumental part
using a virtual sampler instrument within a digital audio workstation. The entire part,
or even some key moments, can be sequenced using Midi data, auditioned,
transformed and adjusted. A drawback is that the sampler would rarely be able to
reproduce extended techniques and phrases as indicated in the score. Hence one idea
is to carry out extensive sampling of the instrument in question beforehand according
to the initial sketches of the piece; in this way the composer would have at his/her
disposal a large bank of custom instrumental gestures to be used while building the
piece later on. This practice may be helpful in trying things out and working offline
with the soundfiles, but it may also be somewhat problematic in limiting the
composer's imagination to the sampled material available. It is up to each individual
to judge what constitutes a good middle ground.
At the same time of scoring and sequencing the violin, the electroacoustic part is
constructed. Processes which can effectively work non-real-time are prepared, such as
certain transformations on pre-recorded material that do no harm being fixed.
Processes which should run in real-time, such as operations on the live feed from the
instrument, are programmed. What we soon end up with is a series of prepared
soundfiles, chunks of SuperColider code and a loose approximation of the
instrumental part within an audio workstation. How will the electronics be
sequenced?
In order to glue things together the old trick of using cues has proven to be adequate.
The idea is to construct a series of distinct processes (cues) within the programming
language and mark on the score where exactly they should be executed. Very often
composers put a cue-number on top of the instrumental part to denote when the
respective cue is to be triggered. In our own work each cue is a SuperCollider
function which usually generates or manipulates sound. All cues are organised into a
list, what we call the cue-list, and can be triggered when their function is called.
These bundles of code are usually executed sequentially, one after another as the
piece unfolds, allowing for a high degree of coordination between the electroacoustic
sound and the instrument.
Using cues overcomes the issue of organisation, but how can the composer audition
both the electronics and the violin part prior to the rehearsal, to test, adjust and
debug? A straightforward solution is to route the audio of the violin sampler

instrument to the programming language for real-time processing which can be done
internally, via dedicated audio routing software, or on the soundcard, if it allows for
flexible signal routing. Furthermore, a mechanism to synchronise the two applications
together (audio workstation and programming language) is required so that the piece
runs through seamlessly and the cues, resting as code within SuperCollider, are
automatically triggered when needed from inside the sequencer.
The way in which the cues will be executed in concert must also be considered. By
far the most widely used option is via a foot-pedal from the instrumentalist on stage.
The only requirement is a single switch connected to the laptop, triggering each new
cue. Cues may also be launched by the laptopist via the keyboard or an external
controller, freeing the violinist to focus more on his/her instrument. In any case there
should be a system in place to adjust for wrong or forgotten cues. It is recommended
that the laptopist oversees the smooth execution of the piece, intervening according to
the score when accidental triggers happen or cues are omitted.
For practicing, the instrumentalist is provided with a score coupled with an easy to
launch SuperCollider patch (or preferably a standalone application) and a foot-pedal
if needed. The code should run with zero calibration from the performer having gone
through an extended trial period in the composer's studio. For multichannel works it is
suggested that the design of the patch allows for an arbitrary number of output
channels to be used depending on the technical specifications of each performance
space. Between 2 and 8 would be enough for most cases. This strategy makes the
piece more portable to different venues and increases its chances of being performed
in the future. It should enable stereo presentation for convenience while being able to
adapt painlessly the majority of audio processes in multichannel.
We have described a straightforward workflow for composing and performing. What
we have lacked so far is a device to aid in the organisation, scheduling and triggering
of musical material and operations within the programming language. Immediately
afterwards we present an open source tool for the creation and presentation of mixed
music.

3 The CuePlayer

The CuePlayer3 version 0.2 is an extension for the SuperCollider programming
language, freely distributed using the Quarks package manager. There are many
features which make it useful for composing in studio and performing on stage
electroacoustic works; here we touch upon the very basics.
As its name suggests, it is aimed at "playing cues", assuming that the composer
structures the piece by preparing them beforehand. A cue is defined as a chunk of
code bundled as a function and placed within a list which holds all processes (the cue-
list). From there we are able to trigger them sequentially or in any order via code, a
Graphic User Interface or any device/software which outputs Midi or Open Sound
Control data. For example, we could lay out a mock-up of the instrumental part in an
audio workstation, create a dedicated Midi-track to send information internally to

SuperCollider and trigger the cues from the sequencer via Midi. We could also use an
external device to launch cues remotely, use a foot-switch on stage, and so on.
The tool comes bundled with a GUI class which brings up the CuePlayer window.
Through the Graphic User Interface the laptopist can monitor input/output buses, use
a timer and a metronome, control the levels, adjust cue-numbers and launch cues. Up
to 8 input and 48 output buses can be monitored, which should be enough for most
pieces, however the inclined user could easily hack the source code to change these.
During performance it is possible to project the cue-numbers on a separate monitor
for the instrumentalist for better coordination.

Default CuePlayer Window.

A convenient method to organise a piece is to place the individual cues into separate
SuperCollider documents and then load them in the cue-list. When modifications in
these files happen while composing, live-reloading functionality ensures that the
changes are active (when saved) the next time a cue is called, thus allowing for a
smooth workflow.
The Timeline class can be used to schedule processes. The composer initially defines
an array with time - function pairs, where time is a number (beats or seconds)
specifying how far in the future the respective function will be called. In this fashion

an arbitrary number of processes can be scheduled for execution and quantised based
on a given tempo.

4 Application Example

The strategy exemplified in this paper as well as the CuePlayer's design, have been
used in interactive works and proved to be useful and stable for composing and
performing. In Karamanlis' (2016) GO4, a series of pieces commissioned by Onassis
Cultural Centre for traditional instruments (Ney, Kanun) and laptop, the electronics
run in SuperCollider and the processes are organised in cues, triggered either via a
foot-pedal by the instrumentalists or by the laptopist situated in the centre of the hall.
The overall musical structure is fixed, yet any processing takes place in real-time
while the music unfolds in front of the audience, involving a significant amount of
indeterminacy due to the inherent nature of the algorithms. The electronic sound
makes use of pulse-based material, polyrhythmic structures and expands the timbral
pallet of the acoustic instruments. It provides an additional layer of sonic possibilities
through the use of technology while viewing the performance space as a
compositional parameter by using multiple speakers.
For each piece of the GO project a CuePlayer is responsible for organising the
electroacoustic sound, sequencing the events and triggering cues. Following an
extensive sampling session for every instrument, a virtual sampler was constructed in
each case which helped to create a mock-up of the performance using a sequencer
running side by side with SuperCollider as exemplified earlier. The strategy allowed
for the pieces to be thoroughly tested in studio in a quadraphonic setup, prepare and
structure the material off-line and then be presented in an octaphonic system with
minimal adjustments in the code.

Excerpt of Asynchronous Looping for Kanun, Ney & Laptop, © 2016, Orestis Karamanlis.

5 Exit

We have looked at a methodology applicable to musical works incorporating real-
time electronics and acoustic instruments and introduced the CuePlayer, a tool aimed
at mixed music which may also be useful in any scenario where the composer wishes
to set up, schedule and trigger bundles of processes. There are different ways to
structure interactive works. We do not imply that working with cues is always the
most efficient. For many generative works that cannot easily be reduced in sections,
thinking in cues may not be the best option. Still, this standard practice, when coupled
with a compact cue-playing system with added functionalities, can be very effective
when a high degree of coordination is needed. Structuring the electronics using an
open-source language may increase the piece's life expectancy, hopefully making it
more adaptable to changes as technology advances and reducing the chance of the
code, and ultimately the piece itself, becoming obsolete.

Acknowledgments

Many thanks to Ambrose Seddon for his well-thought comments on the initial
document. All errors are our own.

References

[1] Agostini, A. & Ghisi, D. 2013. Real-Time Computer-Aided Composition with
bach, Contemporary Music Review, 32:1, 41-48.

[2] Bevelander, B. 1991. Observations on Live Electronics, Contemporary Music
Review, 6:1, 151-157.

[3] Emmerson, S. 1994. ‘Live’ versus ‘Real-Time’, Contemporary Music Review,
10:2, 95-101.

[4] Emmerson, S. 2000. 'Loosing Touch?': The Human Performer and Electronics,
Music, Electronic Media and Culture, 194-216, Ashgate.

[5] Hagan, K. 2016. The Intersection of ‘Live’ and ‘Real-time’, Organised Sound,
21(2): 138–146.

[6] McNutt, E. 2003. Performing Electroacoustic Music: A Wider View of
Interactivity, Organised Sound, 8(3): 297-304.

[7] Risset, J.C. 1999. Composing in Real-Time?, Contemporary Music Review,
18:3, 31—39.

[8] Rowe, R. 1999. The Aesthetics of Interactive Music Systems, Contemporary
Music Review, 18:3, 83—87.

[9] Stroppa, M. 1999. Live Electronics or...Live Music? Towards a Critique of
Interaction, Contemporary Music Review, 18:3, 41—77.

1. Here, in the case of graphic notation we assume the use of targeted visual
symbols which may fall outside the strict boundaries of traditional notation, but
without granting absolute interpretive freedom as in §1.2.

2. See for example Agostini and Ghisi’s bach library for Max.
3. http://fasmatwist.com/opensource, accessed on 01/2017.
4. http://orestiskaramanlis.net/go, accessed on 01/2017.

