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Preface 
 
This volume of proceedings from the conference provides an opportunity for readers to 
engage with a selection of refereed papers that were presented during the International 
Conference on New Music Concepts and Inspired Education. The reader will sample 
here reports of research on topics ranging from mathematical models in music to pattern 
recognition in music; symbolic music processing; music synthesis and transformation; 
learning and conceptual change; teaching strategies; e-learning and innovative learning. 
This book is meant to be a textbook that is suitable for courses at the advanced under-
graduate and beginning master level. By mixing theory and practice, the book provides 
both profound technological knowledge as well as a comprehensive treatment of music 
processing applications. 
The goals of the Conference are to foster international research collaborations in the 
fields of Music Studies and Education as well as to provide a forum to present current 
research results in the forms of technical sessions, round table discussions during the 
conference period in a relax and enjoyable atmosphere.  
36 papers from 16 countries were received. All the submissions were reviewed on the 
basis of their significance, novelty, technical quality, and practical impact. After careful 
reviews by at least three experts in the relevant areas for each paper, 12 papers from 10 
countries were accepted for presentation or poster display at the conference.  
 
I want to take this opportunity to thank all participants who have worked hard to make 
this conference a success. Thanks are also due to the staff of “Studio Musica” for their 
help with producing the proceedings. I am also grateful to all members of Organizing 
Committee, Local Arrangement Committee and Program Committee as well as all par-
ticipants who have worked hard to make this conference a success.  
Finally I want to appreciate all authors for their excellent papers to this conference.  
 
 
April 2019 Michele Della Ventura 
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Generative Conceptual Blending of High-Level Melodic 
Features: Shortcomings and Possible Improvements 

Maximos Kaliakatsos-Papakostas 

Department of Music Studies, Aristotle University of Thessaloniki 
maxk@mus.auth.gr 

Abstract. Conceptual Blending (CB) theory has been primarily employed as a 
method for interpreting creative artefacts, while recently it has been used as a cre-
ative tool for the algorithmic invention of new concepts. In music, interesting ex-
amples have been presented where low-level musical information (e.g. chord roots, 
chord types or pitch classes) is combined to generate new musical objects (e.g. 
cadences) or even entire harmonic spaces. These generative frameworks, however, 
do not incorporate information for high-level descriptive features of music, as pen-
tatonicity or rhythm syncopation. The paper at hand presents a methodology where 
high-level blending is achieved by recombining low-level information of melodies 
using a genetic algorithm. A test case is examined where a Chinese Han melody is 
blended with a Jazz melody and representative blends are analyzed to expose some 
shortcomings and possible improvements in this approach. 

Keywords. Conceptual Blending, Melodic Generation, High-Level Features 

1 Introduction 

The theory of Conceptual Blending (CB) [1] relates with combinational creativity, which 
Boden [2] maintains is the hardest to describe formally. CB theory has been used primar-
ily as a method for interpreting creative ideas; such examples can be found in the analysis 
of Zbikowski [3] on Palestrina’s text painting, or the analysis of Tsougras & Stefanou [4] 
for Mussorgsky’s “Pictures at an Exhibition”. These analyses mainly examine how mu-
sical structures and high-level concepts are blended with extra-musical ideas to form mu-
sical works. The methodological framework of CB theory incorporates two input spaces 
that are described formally, with properties and relations between these properties. The 
input spaces are blended to form new spaces that include meaningful and creative com-
binations of properties and relations if the input spaces, potentially leading to the creation 
of altogether new spaces. 
 
Interesting musical results have been presented lately in computational methodologies 
where CB is used generatively. For instance, in [5] a methodology was presented where 
the properties of the Perfect and the Phrygian cadences are combined to generate the 
tritone substitution cadence, which is a chord progression that was developed in Jazz 
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centuries later in relation to the inputs. A similar approach was employed in the Chame-
leon28 melodic harmonization assistant [6], where generic chord transitions, instead of 
merely cadences, were blended leading to the generation of new probabilistic harmonic 
spaces that allowed, for instance, meaningful connections between remote tonalities, or 
the generation of hybrid musical styles, e.g. blends between harmonies of Bach choral 
and Jazz standards. 
 
The aforementioned interesting results in generative conceptual blending are restricted, 
however, to low-level descriptions of the musical surface, e.g. root notes of chords, chord 
types, pitches etc. These low-level descriptions do not represent explicitly high-level con-
cepts, as the ones employed in the interpretative use of conceptual blending. For instance, 
Zbikowski [3] refers to how Palestrina combines the concept of “falling from heaven” in 
the lyrics with a “descending” musical passage. The framework for generative conceptual 
blending used in the “traditional” approach presented in the previous paragraph does not 
support the incorporation of such high-level features in the blending process. 
 
Aim of this paper is to present a new approach in generative conceptual blending that 
allows the incorporation of high-level features in the blending process; the specific do-
main of application is the generation of melodies. With this methodology, high-level con-
cepts of two input melodies can be blended, generating new melodies that reflect the 
combined high-level information. To this end, Chinese melodies in the Han style and 
Western melodies, mainly in the style of Jazz standards, have been collected and the 
results of a specific use case are presented, which expose some shortcomings and ways 
for possible improvements in this framework. This framework has been examined previ-
ously for drums rhythm generation [7], however, the employment of many drums features 
(forty) did not make clear what the methodology actually does and how it can be im-
proved. In the paper at hand, the focus is placed on four partially distinct features, a fact 
that allows an accurate assessment of the shortcomings. 

2 Methodology for Generating Melodies with High-Level Feature 
Blending 

An overview of the methodology is shown in Fig. 1, according to which, two input mel-
odies are given as input. High-level features are extracted from these melodies and their 
average first order Markov matrix of pitch transitions is computed. A combination of 
desired high-level features from the input melodies is selected (input features 1 and 2, 
corresponding to features from input melodies 1 and 2 respectively); the com-
bined/blended features, along with the average Markov matrix, comprise the target fea-
tures that a new melody should satisfy. A genetic algorithm is afterwards employed to 
successively recombine the low-level material of the input melodies until the target fea-
ture combination of the input features are achieved. During the evolutionary process, the 
Markov matrix of pitch transitions for each individual is also computed. The deviation 

                                                             
28 http://ccm.web.auth.gr/chameleonmain.html 
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from this matrix from the average Markov matrix of the inputs is introduced as penalty 
during fitness evaluation (analyzed in Eq. (1) later in the text). 

 
In the middle part of Fig. 1, the typical “blending diamond” is shown, which illustrates 
the relations between the input spaces, the generic space and the blended space. In this 
case, the input spaces are sets of four high-level features (numerical values) extracted 
from the input melodies. The generic space includes features that have similar values; 
e.g. if two melodies with high rhythm density are given, the generic space is the concept 
of high rhythm density. The blended spaces is a set of four features, produced by com-
bining features of the input spaces. In the current framework, the generic space is rather 
trivial since it just indicates which features are of “similar” value. In formal CB theory, 
however, the generic space plays the crucial role of computing which properties and re-
lations need to be transferred as-they-are in the blend. In the concluding section, the po-
tential role of the generic space in the high-level framework is discussed in the context 
of future work. 
 

 
Fig. 1. Overview of the high-level melodic blending methodology. Two melodies are given as inputs and 

high-level features are extracted. Selected features are blended and used as target features; a genetic algorithm 
evolves copies of the inputs until a new melody that reflects the target features is generated. 

 
Eq. (1) shows the fitness value for each generated melody, m. The α and β constants 
correspond to the weight of each component during fitness evaluation, respectively devi-
ation from target/blended features and the average Markov matrix of pitch transitions for 
the inputs. Specifically, 

-  corresponds to feature i of the generated melody, 
-  to target feature i, 
-  to the Markov matrix of pitch transitions of the new melody and 
-  to the average Markov matrix of pitch transitions of the input melo-

dies. 
 
 

 
(1) 

 
The number of employed high-level features, as shown in the sum of feature differences 
in Eq. (1), is four. These features are the following: 
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1. Rhythm density: measured as the ratio of the number of note events in the melody 
over the total number of sixteenths (maximum considered resolution) in the melody. 

2. Syncopation: a number that reveals how complicated a rhythm is, computed with a 
simplified version of the syncopation version proposed in [8]. 

3. Pentatonicity: this feature describes the best correlation between the pitch class pro-
file of the melody and any circular shift of a binary pentatonic template. In essence, 
this feature produces a value between 0 and 1 that shows how close to the pentatonic 
a pitch class profile distribution is. 

4. Small intervals: the percentage of non-zero intervals between successive pitches that 
are less or equal to two semitones. 
 

The evolutionary process is inspired by low-level blending. The main idea is to recom-
bine only elements of the input melodies, towards approaching the target features. This 
means that genetic operators related to mutation are excluded. This also means that the 
initial population comprises solely copies of the two input melodies, no randomly se-
lected melodies or random melodies altogether. The genetic operators act on two parent 
melodies selected each time from the pool of melodies in the current generation allowing 
for: (a) random exchange of a single pitch; (b) exchange of the rhythmic structure in 
randomly selected bars with preservation of pitches; and (c) exchange of the entire 
rhythm structure in the entire melodies, with preservation of pitches. These operators 
ensure that only pitches and rhythm structures in the input melodies is recombined for 
forming new individuals/melodies towards capturing the target/blended features. 

3 An Analysis of Generated Blends Towards Identifying and 
Improving Shortcomings 

Multiple melodies can be generated by applying the methodology described previously. 
Specifically, multiple blends can be created by combining high-level features from each 
input and many melodies can be generated that correspond to these feature combinations. 
All combinations (or blends) of the four high-level features that are employed in this 
experimental setup are fourteen in number; actually, all combinations are sixteen but the 
two inputs are included as the trivial “combinations” (taking all features from each input 
does not lead to a blend). 
 
Two stylistically distinct sets of melodies were gathered: 350 melodies from the Chinese 
Han style, taken randomly from the over 1200 melodies in the Essen Corpus [9-10], and 
350 Western melodies (mainly Jazz standard melodies) obtained from online resources. 
An illustration of all the melodies, along with some blends of specific input melodies, is 
given in Fig. 2. Therein, Principal Component Analysis (PCA) is applied on the four-
dimensional representation of all melodies and the projection of the first two dimensions 
is shown. The first two PCA dimensions account for the 72% of data variance. The hori-
zontal axis of the PCA plot corresponds to a combination of the pentatonicity an density 
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features. Specifically, the horizontal axis has a negative correlation of -0.83 with the den-
sity feature and -0.90 with pentatonicity, while (absolute) correlation increases even more 
for the sum of these two features to -0.98. This means that the horizontal axis can be 
interpreted as follows: melodies to the left have higher pentatonicity and density feature 
values, while melodies to the right have lower values for these features. Therefore, as Fig. 
2 shows, Han melodies have higher pentatonicity and density values and Western melo-
dies the opposite. The vertical axis is correlated with the syncopation feature (0.87), while 
there is no clear distinction between Han and Western melodies regarding this feature – 
both styles are similarly represented in all syncopation ranges. The small intervals feature 
does not appear to be correlated with any of the PCA axes. 
 
During numerous sessions, many pairs of melodies from the two styles have been selected 
for blending; multiple blending results were examined and a representative case is used 
as an example. Fig. 2 shows the pair of inputs used in this example and with the resulting 
blends, on the two-dimensional PCA projection. The two inputs incorporate distinctly 
different characteristics, as indicated by the feature values in the first two columns in 
Table I; the scores of the two melodies are shown in Fig. 2 (a) and (b), for the Han and 
the Jazz inputs respectively. By Fig. 2 one can identify four clusters of blends: two clus-
ters forming the two respective inputs and two clusters in the center, one higher and one 
lower in the vertical dimension. Some representative of each cluster are shown in Table 
I (their feature values) and Fig. 2 (c)-(f). 

 
Fig. 2. Illustration of the first two PCA dimensions for a collection of Han and Jazz melodies, along with two 

inputs (Han and Jazz) and all the best blends for each feature combination. 
 
Table I, specifically, shows features related to the Han input with bold numbers. For in-
stance Blend 6 has syncopation and pentatonicity values coming from the Han input (0.66 
and 0.99 respectively) and rhythm density and small intervals from the Jazz input (0.37 



 48 

and 0.74). The genetic algorithm that implements this blend, however, fails to capture the 
rhythm density feature according to the target value of the Jazz input (0.26) and remains 
relatively high in the blend (0.37). On the other hand, blend 12 has low rhythm density 
and pentatonicity values, taken from the Jazz input, and thus it is placed on the right side 
of the graph, closer to the Jazz input. Again the genetic algorithm fails to assign the high 
targeted value for syncopation (0.63) from the Han input and compromises with a lower 
value (0.30). 
 
Shortcomings: Blends 6 and 12 make it obvious that there can be cases where the genetic 
algorithm cannot find a good compromise between potentially conflicting feature values 
and generates melodies that are unavoidingly not optimal in terms of one such feature. 
Rhythm density and syncopation seems to be a good example of that. Even though the 
notions of rhythm density and syncopation are not necessarily related in general, in the 
examined example and for the selected inputs higher density means higher syncopation 
(Han) and vice versa (Jazz). Therefore, the genetic algorithm does not have the necessary 
genetic material, nor the genetic operators, to construct blends that successfully violate 
the apparent correlation. 
 

TABLE I: FEATURES OF THE INPUTS AND SELECTED BLENDS. 

Melody Rhythm Den-
sity Syncopation Pentatonicity Small Inter-

vals 
Han 0.50 0.63 0.99 0.43 
Jazz 0.26 0.00 0.36 0.76 
Blend 6 0.37 0.66 0.99 0.74 
Blend 12 0.19 0.30 0.44 0.79 
Blend 11 0.23 0.00 0.99 0.75 
Blend 2 0.50 0.64 0.43 0.44 

 
Having a pool of many features to blend for generating a new melody increases the 
chances that some feature combinations become potentially contradicting. On the other 
hand, using very few features might lead to an under-definition of desired properties, 
leading to melodies that are typically correct in terms of features, but do not capture the 
overall essence of what the features aim to reflect. Blend 2 in Fig. 3 (f) is an example of 
that: it accurately captures the features the target features and pentatonicity and small 
intervals are kept low (0.43 and 0.44 respectively) but in a peculiar manner that does not 
reflect the intended properties according to the given inputs. Low pentatonicity should 
make the pitch content of the blend similar to the one of the Jazz input, hence presenting 
rich pitch content. Contrarily, the result (Fig.  (f)) merely includes three pitches, while 
mainly one pitch is played; this pitch setup satisfies the low pentatonicity demand but the 
pitch content does not reflect the characteristics of the low pentatonicity (Jazz) input. 
Similarly, a low percentage of small intervals is achieved by playing mostly constant 
intervals, which are not accounted for when computing the small intervals feature as de-
scribed in Section 2. 
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(a) 
 

(b) 
 

(c) 
 

(d) 
 

(e) 
 

(f) 
 

 
Fig. 3. Han (a) and Jazz (b) inputs, along with selected blends, namely Blend 6 (c), Blend 12 (d), Blend 11 (e) 

and Blend 2 (f). 
 
Possible improvements: Incompatibility of certain feature combinations could possibly 
be addressed by applying multi-objective optimization criteria, allowing the genetic al-
gorithm to find a good compromise in violating, to the least possible extent, a combina-
tion of correlated feature values instead of completely ignoring the value of one feature. 
Additionally, the process could possibly allow the inclusion of “genetic material” from 
other melodies (not necessarily the inputs) that potentially satisfy the required feature 
combinations. Keeping material (pitches and rhythms) solely from the inputs, to some 
extent reflects the basic principles of low-level blending. The introduction of new mate-
rial is, however, “permitted” in the formal framework of blending, according to the notion 
of “blending completion”. Blending completion is the process of incorporating elements 
that do not exist in the inputs, in order to resolve incomplete or inconsistent blends. In 
the example of the tritone substitution cadence example, the introduction of the Ab pitch 
in the penultimate chord is a product of blending completion, which ensures that the type 
of the penultimate chord is major with minor seventh. 
 
The under-definition of features could be addressed by involving implicit machine learn-
ing techniques in the process of evaluation that guarantee conformation of the blended 
melody with some critical stylistic (implicitly learned and latent) features. It is reminded 
that under-definition of a feature may lead to the generation of melodies that satisfy this 
specific feature, but skip to satisfy some other critical aspects of the style (e.g. low pen-
tatonicity is achieved with unusually extensive note repetitions in the case of Blend 2). 
Trying to over-define a feature by introducing more related features (e.g. combining pen-
tatonicity with the feature of note repetitions or with pitch class profile information en-
tropy) will possibly lead to conflicting relations between them, amplifying the problem 
of feature incompatibility described in the previous paragraph. Implicit learning methods 
learn latent features that are not necessarily interpretable by iterating through data; an 
example of such class of methods is deep neural networks. 
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It appears that such techniques, having no explicit information about what pentatonicity 
or repetition is, can play the role of a generic evaluator that is not biased towards any 
specific feature. For instance, imagine a neural network, N, that has been trained on many 
melodies from many styles. When evaluating Blend 2, such an evaluator would reject 
this melody because it would be “unusual” (regardless of the fact the reason might not be 
interpretable) in comparison to the other melodies that the evaluator has been trained on. 
Eq. (2) shows how fitness evaluation in Eq. (1) could change in order to accommodate 
the probability given N for the melody m; this probability is shown in Eq. (2) as N(m). 
 

 
(2) 

 

4 Conclusion 

This paper has presented a methodology that allows the incorporation of high-level fea-
tures in generative conceptual blending. While current approaches allow only blending 
of low-level information, the presented approach is takes recombines low-level infor-
mation towards achieving targets that are related to higher-level descriptive values. This 
methodology is applied on blending melodies in the Chinese Han and Western, mainly 
Jazz, styles. The algorithmic core is based on conceptual blending, while the generative 
part introduces a genetic algorithm that recombines material from the input melodies. 
Four distinct high-level features were introduced, which is a number of features small 
enough to allow qualitative assessment of shortcomings and possible improvements in 
the examined framework. An example test-case has been presented, where a Han melody 
is blended with a Jazz melody and representative samples of fourteen blends are exam-
ined in detail. 
 
Two main shortcomings were identified that, under specific circumstances, might lead to 
the generation of sub-optimal blended melodies: (a) the inclusion of conflicting features 
in the blend and (b) the potentially low descriptive quality of a feature. Conflicting fea-
tures could be addressed by introducing multi-objective optimization criteria in the evo-
lutionary process, or/and by allowing material from third melodies (not solely the inputs) 
to be involved in the evolutionary stage. Low descriptive quality of features could be 
addressed by introducing implicit learning models (e.g. deep learning) that play the role 
of stylistic evaluators, ensuring that the blended melodies incorporate some critical sty-
listic properties. Future work will also incorporate a more active role of the generic space 
in this high-level framework. In this version of the feature blending algorithm, the generic 
space simply indicates which features of the inputs are similar. In a future version, the 
inclusion of low-level “similar” patterns of the inputs will also be included. Thereby, 
similar segments/patterns in the input will be identified and included in the generic space 
and, subsequently, in all generated blends. 
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