
 1

 2

Accademia Musicale Studio Musica

International Conference on New Music Concepts and
Inspired Education

Proceeding Book

Vol. 6

Accademia Musicale Studio Musica
Michele Della Ventura

Editor

COPYRIGHT MATERIAL

 3

Printed in Italy

First edition: April 2019

©2019 Accademia Musicale Studio Musica
www.studiomusicatreviso.it

Accademia Musicale Studio Musica – Treviso (Italy)
ISBN: 978-88-944350-0-9

 4

Preface

This volume of proceedings from the conference provides an opportunity for readers to
engage with a selection of refereed papers that were presented during the International
Conference on New Music Concepts and Inspired Education. The reader will sample
here reports of research on topics ranging from mathematical models in music to pattern
recognition in music; symbolic music processing; music synthesis and transformation;
learning and conceptual change; teaching strategies; e-learning and innovative learning.
This book is meant to be a textbook that is suitable for courses at the advanced under-
graduate and beginning master level. By mixing theory and practice, the book provides
both profound technological knowledge as well as a comprehensive treatment of music
processing applications.
The goals of the Conference are to foster international research collaborations in the
fields of Music Studies and Education as well as to provide a forum to present current
research results in the forms of technical sessions, round table discussions during the
conference period in a relax and enjoyable atmosphere.
36 papers from 16 countries were received. All the submissions were reviewed on the
basis of their significance, novelty, technical quality, and practical impact. After careful
reviews by at least three experts in the relevant areas for each paper, 12 papers from 10
countries were accepted for presentation or poster display at the conference.

I want to take this opportunity to thank all participants who have worked hard to make
this conference a success. Thanks are also due to the staff of “Studio Musica” for their
help with producing the proceedings. I am also grateful to all members of Organizing
Committee, Local Arrangement Committee and Program Committee as well as all par-
ticipants who have worked hard to make this conference a success.
Finally I want to appreciate all authors for their excellent papers to this conference.

April 2019 Michele Della Ventura

 5

Contents

Playlist Shuffling given User-Defined Constraints on Song Sequencing ……… 7
 Sterling Ramroach, Patrick Hosein

Perceptual foundations for a nonlinear asynchronous expression ……………... 21
 Mitchell Bercier

A Mathematical Insight into Balakirev’s Orientalism in Islamey ……………... 34
 Nikita Mamedo

Generative Conceptual Blending of High-Level Melodic Features:
Shortcomings and Possible Improvements …….……………………………… 43
 Maximos Kaliakatsos-Papakostas

The use of virtual instruments in the process of creating a soundtrack
with film music. Is this the twilight of film music played by man? …………… 52
 Adrian Robak, Wojciech Wieczorek

MGTGAN: Cycle-Consistent Adversarial Networks for Symbolic
Multi-track Music Genre Transfer ………..…………………………………… 72
 YanLun Peng, Haitao Zheng

Kinetic Sound Art and The Sound Canvas ……………………………………. 79
 Ian Costabile

The Dagbon Hiplife Zone in Northern Ghana Contemporary Idioms of
Music Making in Tamale ………………………………..…………………… 85
 Dominik Phyfferoen

Raga classification in Indian Classical music - A generalized approach ……… 116
 Jayaganesh Kalyanasundaram, Saroja TK

The Music Education Project: Voices from Future Teachers …………………. 123
 Giovanna Carugno

Laying the Foundation For the Inclusion of indigenous Music in
Elementary and Secondary Puerto Rican Music Education …………………… 129
 Francisco L. Reyes

An Outline of Foreign Language Anxiety Research …………………………... 135
 Zdena Kralova

 6

Emotions and Foreign Language Learning: A Mysterious Relationship ……… 141
 Jana Kamenicka, Zdena Kralova

Exploring primary education teachers’ perceptions of their Technological
Pedagogical and Content Knowledge …………………………………………. 146
 D. Roussinos, and A. Jimoyiannis

Educational Non-visual Environment for Symbolic Programming
of Cartesian Motion to include Children with Visual Impairment into
Robotic Sciences ………………………………………………………………. 154

Francisco J. Ruiz-Sanchez, Enrique Mireles-Rodriguez, Gustavo Guzman Solis

 7

Playlist Shuffling given User-Defined Constraints on
Song Sequencing

Sterling Ramroach1 and Patrick Hosein2

1Department of Electrical and Computer Engineering
2Department of Computing and Information Technology
The University of the West Indies, St. Augustine campus

sramroach@gmail.com, patrick.hosein@sta.uwi.edu

Abstract. We consider the problem of track sequencing for a given music
playlist. We assume that a user chooses a set of desirable songs to form a playlist
as would be done in applications such as iTunes or Google Play Music. However,
instead of using the typical random shuffle feature, we introduce what we call a
smartshuffle option in which the user specifies various constraints that must be
satisfied when determining the playback sequence. These constraints are based
on several attributes of the songs. If the user does not provide any constraints, all
attributes are considered equal. The general computational problem is the Trav-
elling Salesman Problem in Euclidean space. We consider the following ap-
proaches: hierarchical clustering (Ward's variance minimization), nearest neigh-
bor, and an approximation approach (Christofides' 3/2-approximation). We then
compare performances based on a defined performance metric. We also perform
subjective evaluation to ensure that the proposed model enhances the listening
experience of a user.

Keywords. Playlist shuffling, Music sequencing, Optimization, Data Analytics.

1 Introduction

Today music consumers have access to extensive music collections and predetermined
playlists. These playlists are usually generated and sorted by music producers or disc
jockeys. The sorting process may place consecutive songs from the same genre or artist
next to each other or may mix genres harshly. The variation and subjectivity of the
outcome is a major drawback to the listening pleasure of a consumer. However, tech-
nological advances in the digitization of music has revolutionized the way in which
users listen to music as they are now able to create personalized playlists. Services such
as Spotify [22], iTunes [2], and Google Play Music [11], provide a platform for users
to compile their playlists with a large selection of songs. These collections can be used
for special events or as background music while studying.
In this paper we focus on the sequencing of the playback of songs in a given playlist
such that the transitions are soothing to the user. The attributes used to determine the
optimal sequencing can be provided with different weights by the user based on their
personal preferences. Existing research is inconclusive about which combination of at-
tributes and their various weightings lead to a measure of the pleasantness of a song. It

 8

is also inconclusive about which combinations of attributes in subsequent songs lead to
a more pleasant playback sequence. As a result, we use the mean Euclidean distance of
all attributes of all songs in the playlist as a measure of pleasantness. When user defined
preferences are considered, this metric will be adjusted to suit the user's preferences.

2 Related Work and Contributions

Previous researchers built tools to extract the meta-data from songs [18, 1, 17] and these
were combined to form large datasets for public usage [5]. Current research focuses on
assisting the consumer with the generation of personalized lists [6, 15, 21]. The mood
of these lists are often supplied by the consumer and the playlist is built via the meta-
data of songs in the pool [13]. A common metric used to assess the quality of the playlist
is user satisfaction. This is quantified by observing listening times, customer return
rates, track downloads or surveys [6]. Playlists are generated based on the user's listen-
ing history, hit statistics, and song tags.
The problem addressed in this paper is the ordering of songs in a list that has already
been created by the user, such that the pleasantness of the sequence is maximized. Cur-
rent means include sorting randomly, alphabetically, on metrics such as number of hits,
or using the data generated by asking the user to rate each song [4]. Naive ordering such
as random or alphabetical has a low probability of producing a pleasant sequence, and
as playlists increase in size, it is not feasible for a user to rate every song. The presented
solution removes the need for extensive user interaction by retrieving objective metrics
about each song in the playlist and applying various techniques to achieve the most
pleasant or smartest ordering of songs. The Nearest Neighbor approach has been shown
to be superior for playlist generation [14] and is thus included in our investigation. We
find that the general computational problem is the Travelling Salesman Problem (TSP)
in Euclidean space and so we also consider the Christofides' 3/2-approximation algo-
rithm [8]. The last algorithm considered is Ward's variance minimization hierarchical
algorithm as it is known to provide reasonable results with low runtime for problems in
Euclidean space [10].

3 Problem Definition

We consider the problem in which a user has chosen a set of songs S for a playlist and
wishes to hear them all. Therefore, we are not concerned with the problem of choosing
songs for the playlist. Although the user likes all of the songs in the list, the playback
order is also important. For example, the user may prefer to listen to a sequence of
several songs from a single artist or genre before switching to another one. We therefore
address the problem of finding a playback sequence in which all songs are played but
where the sequence provides the most pleasant experience from beginning to end. No
user input is required nor are labels or hit statistics used. Pleasantness is a measure of
the pairwise Euclidean distance between consecutive songs. This definition can be up-
dated via a weighted computation discussed later.

 9

We assume that each song has the following meta-data: title, artist, and year released.
If this meta-data is not available, it can be acquired online. We use Spotify's Web API
to obtain attributes for each song. The attributes used are, acousticness, danceability,
duration, energy, instrumentalness, key, liveness, loudness, mode, spechiness, tempo
and valence (see [9] for descriptions of these). Our objective is to determine a playback
sequence that minimizes the difference in attributes between consecutive songs. If we
are listening to a high tempo song we wish to maintain a similar level of tempo in the
next song but over time the tempo will gradually change. Therefore, we must determine
a sequence of songs from the playlist that minimizes transitions between consecutive
songs, across multiple attributes.
All attributes, except artist and year, have been normalized to values between
0 and 1. In the case of artist there are no good similarity metrics since the similarity
between two artists tends to be subjective [21]. We therefore use a simple distance met-
ric for artists called artist difference. If we have two songs by the same artist then the
artist difference is 0, whereas if the artists are different then the difference is 1. This
will help cluster songs by a single artist together. In the case of year of release, the
distance metric between two songs is simply the absolute value of the difference in year
released, divided by 10. A decade is therefore represented by a value of 1. Using these
distance definitions we define the distance between two songs as the sum of the square
of the difference of each attribute. Note that in order to find the optimal solution one
would have to evaluate all |S|! possible solutions.
In the general sense, this is the Travelling Salesman Problem (TSP) in Euclidean space
(NP hard) since we are going from song to song (city to city) with the intent of mini-
mizing the sum of the attribute differences (sum of the distances between cities). We
need to find a path which includes all songs but where the sum distance metric is min-
imized. The order in which songs are visited is the playback sequence. Some of the best
known algorithms for this problem are the 3/2-approximation via Christofides' Algo-
rithm [8], and polynomial time approximation schemes (PTAS) by Arora [3] and
Mitchell [16]. However, due to the lack of evidence supporting the practicality of PTAS
[20], we focus on Christofides' algorithm. Next, we provide various heuristics for this
problem with significantly less computational complexities.

4 Heuristics

We investigated various approaches to the problem in both its specific application and
the generalized TSP and evaluated performance in terms of average distance between
consecutive songs as well as computation time. We need to consider computation time
since it is always possible to obtain the optimal solution using an exhaustive search but
this will take a considerable amount of time. In the following sections we assume that
there are N songs in the playlist, which results in N – 1 song pairs and hence transitions.

 10

Christofides' Approximation Algorithm

Approximation algorithms are used to provide good results in reasonable time. Chris-
tofides' algorithm [8] finds approximate solutions on instances where the distances are
symmetric and obey the triangle inequality. This technique begins by building a mini-
mum spanning tree from the playlist, followed by a minimum-weight matching algo-
rithm on the set of songs which have an odd degree. After adding both graphs, an Euler
cycle is created from the combined graph with shortcuts to avoid visited songs. This
algorithm ensures that the result is at most 3/2 times the optimal solution. Each song is
represented as a node and distances or the weight of the edges from each song to every
other song is calculated using the pairwise Euclidean distance. Figure 1 illustrates an
example of a playlist of 10 songs being represented as a graph before and after applying
Christofides' algorithm.

Fig 1. The initial graph and solution by Christofides' algorithm.

Hierarchical Clustering

In this section, a clustering approach to the problem is described. First, the songs are
divided based on a year range. For example, all 70s songs are put in one cluster, all 80s
are put in another, etc. Within each of these clusters, sub-clusters are formed based on
the artist of the songs. Such clusters are only formed if the number of songs by an artist
exceeds some threshold. All artists that do not satisfy this criterion will have all of their
songs included in one cluster. Next, sub-clusters are formed from within the artist clus-
ter based on another attribute (e.g. tempo). A threshold is again used and if a sub-cluster
is smaller in size than this threshold then the cluster will no longer be split. Otherwise,
the process continues with a new attribute. Figure 2 illustrates an example of a Hierar-
chical Cluster of a 6 song playlist comprised of Barry White (BW) and Rod Stewart
(RS).

 11

Fig 2. Example of hierarchical clustering.

Regarding the Spotify-derived attributes, a threshold of 0.5 is used to split a cluster (i.e.,
songs with a metric value of 0.5 or less are placed in one cluster while the others are
placed in another). If the present cluster has at least some given number of songs, this
process is repeated. Finally, the sequence of songs is obtained by traversing the com-
ponents of each cluster going from left to right (or right to left). Note that the members
of each cluster are similar and thus exhibit low differences. Adjacent clusters are also
similar since the prior splits kept certain attributes close to each other. Hence, we expect
the final sequence to have small variations from song to song.

Love's Theme
I've Got So Much to Give

I Don't Want to Talk About It
Some Guys Have All the Luck

Rum and Coke
You're My High

My Heart Can't Tell You No
Infatuation

The type of hierarchical clustering used is Ward's variance minimization method [7].
Euclidean distance is used as the distance function. Ward's variance minimization
method begins with each song existing as its own cluster. Larger clusters are formed
sequentially until there is only one cluster of all N songs. However, at each step, the
two clusters whose union results in the minimum increase in total within-cluster vari-
ance after merging, are combined. For example, if a cluster a is comprised of clusters

 12

b and c, and an unused cluster d is to be assessed for its suitability in a merger, the
variance v(a, d) is calculated as follows:

𝑠𝑞 =
𝑑 + |𝑏|
𝑇

𝑣(𝑑, 𝑏)- +
𝑑 + |𝑐|
𝑇

𝑣(𝑑, 𝑐)- − 	
|𝑑|
𝑇
𝑣(𝑐, 𝑏)-	

𝑣 𝑎, 𝑑 = 	√𝑠𝑞

where T = |b| + |c| + |d|, and |*| is the cardinality of its argument. Variance minimization
is maintained by choosing to merge with the cluster, which results in the smallest in-
crease in variance. Ward's method is the closest to the Nearest Neighbor in terms of
properties and efficiency.

Nearest Neighbor Greedy Algorithm

The Nearest Neighbor Greedy algorithm uses the Euclidean distance between songs.
The playback sequence is determined as follows: start at a random song, find the nearest
song that has not yet been added to the sequence, repeat until all songs are in the se-
quence.

Lower Bound on Optimal Solution

The traditional approach is a random shuffle and hence the expected performance of a
random shuffle can serve as a lower bound. Since the number of possible sequences is
large we instead obtain an experimental average. Note that a lower bound in perfor-
mance corresponds to an upper bound on the performance metric which is the mean
Euclidean distance.

Upper Bound on Optimal Solution

The upper bound on performance is calculated as follows. Consider all song pairs and
sort them by their Euclidean distance. The average of the smallest N – 1 pairs will form
a lower bound on any sequence of the songs and hence can be used as an upper bound
on performance. Note that these pairs of songs will typically not be a feasible playlist
since a single song may occur in more than two pairs in the chosen list.
A well-known upper bound for the TSP is the Held-Karp algorithm [12] which has the
optimization property that every sub-path of a path of minimum distance is itself of
minimum distance. This would typically provide a superior upper bound but the run-
time is impractical for a playlist of more than 10 songs.

 13

5 Numerical Results

Dataset and Features

The dataset was populated by creating a pool of the most popular songs from 1996 to
2017 and randomly selecting N songs. The resulting dataset contains N = 101 songs and
information such as the title, artist, and year, are included. Spotify's API is also used to
obtain the following attributes: acousticness, dance-ability, duration, energy, instru-
mentalness, key, liveness, loudness, mode, speechiness, tempo, time signature, and va-
lence.
All attributes, except year, artist, and title, were normalized to values between 0 and 1.
The title of the songs played no role in any of the computation performed. Music is
often categorized by decades and as such, the difference in a decade is reduced to a
value of 1 (i.e., the year attribute is divided by 10). Finally, the pairwise Euclidean
distance between two songs were unchanged if both songs were created by the same
artist. Otherwise, when calculating the pairwise Euclidean distance, a value of 1 is
added. These assignments ensure that songs from the same decade and artist are given
a higher chance of being grouped together in the final sequence. Due to the subjectivity
of these decisions, provisions were made for user-defined preferences in a later section.

Discussion

The performance of all algorithms are compared via two metrics: the resulting mean
Euclidean distance of the shuffled playlists and the time taken to create the sequence is
also determined. The mean Euclidean distance 𝑑	of a sequence of N songs is calculated
by:

𝑑 = 	
1

𝑁 − 1
𝑑(𝑖, 𝑖 + 1)

6	789:

67:

where d(q, r) is the pairwise Euclidean distance between songs q and r. The pairwise
Euclidean distance is calculated using the formula below:

𝑑 𝑞, 𝑟 = 	 𝑑𝑜𝑡 𝑞, 𝑞 − 2	×𝑑𝑜𝑡 𝑞, 𝑟 + 𝑑𝑜𝑡(𝑟, 𝑟)

where dot(a, b) is defined as:

𝑑𝑜𝑡 𝑎, 𝑏 𝑖, 𝑗, 𝑘, 𝑚 = 𝑠𝑢𝑚(𝑎 𝑖, 𝑗, : ×𝑏 𝑘, : , 𝑚)

There are other methods for computing distance but this formulation has two ad-
vantages. The most relevant advantage is if one argument varies, then dot(q, q) and
dot(r, r) can be pre-computed. The other advantage is its computational efficiency when
handling sparse data. The equations above were included in scikit-learn libraries [19],
which were used in these experiments.

 14

TABLE 1. PERFORMANCE AND RUN TIME COMPARISONS.

Algorithm Mean Distance 𝑑 Run time (s)
Christofides' Algorithm 0.98 5.54

Ward's Method 1.24 2.36
Nearest Neighbor 1.14 2.08

Lower Bound on Performance 1.75 2.05
Upper Bound on Performance 0.66 2.08

Table 1 presents performance and run time results for the various heuritics as well as
the bounds. Christofides' algorithm attained the best playback sequence with a 𝑑 of
0.98. The one drawback to this approach is the length of time taken to produce the
output. As the size of the playlist increases, so too will the time taken to produce the
most pleasant playback sequence. The Nearest Neighbor algorithm achieved the second
best 𝑑 of 1.14, and was computed in the second fastest time. The generation of a se-
quence using a value of N for the number of clusters would entail comparing the dis-
tance of the first song to every other song (N – 1) in the list in order to choose the song
with the smallest d. Each subsequent song would then repeat this process for all remain-
ing songs in the list, until the sequence is completed. The results show that this greedy
approach is faster than other viable approaches. As expected, the random shuffle
(Lower Performance Bound) performed the worst, and the Upper Performance Bound
resulted in an unattainable 𝑑. Figure 3 illustrates the pairwise Euclidean distances be-
tween all songs in sequences produced by a random shuffle and the best shuffle (Chris-
tofides' algorithm). The difference between songs are much higher in the random shuf-
fle.

6 User Defined Preferences

In the above sections it was assumed that the user did not provide any preferences (and
so default values were used). In this section we consider the case where users can adjust
the weights for the various features. A song s has attributes “acousticness”, “danceabil-
ity”, ..., “time signature”, and “valence”. Each of these attributes are multiplied by their
respective weights: wacousticness, …wtimesignature, and wvalence, where 0 ≤ w ≤ 1.
We consider two examples. The user U1 may prefer to place a weight of 0 to “liveness”,
“duration”, and “loudness” (i.e., wliveness = wduration = wloudness = 0), because these features
do not seem relevant to the progression of the mood of a playlist. Another user U2 may
agree with U1's judgment of which attributes seem irrelevant, but can be more inter-
ested in a shuffle where the “energy” of the songs are given preference over the other
attributes and thus use a weight of 0.9 for this attribute (i.e., wenergy = 0.9). In both cases,
the weights of all other attributes are by default, set to 0.5.

 15

Fig. 3. Pairwise Euclidean distances of random vs best sequences.

We use the best algorithm obtained above (Christofides' algorithm) to illustrate how
adjustments to the weights of the various features influence the computed sequence.
Note that if an application is developed for this algorithm then these adjustments can
be made via simple sliders. Table 2 shows the results of all algorithms on U1's prefer-
ences. It is expected that the 𝑑 for all algorithms would be less than that reported in
Table 1 due to the reduction in the distance since the contribution of those attributes are
now zero. Christofides' algorithm maintained the best performance, with a significantly
smaller 𝑑	than all other techniques but with the worst execution time. The simplicity of
U1's preferences results in essentially the deletion of three attributes from the dataset.
Some complexity is introduced when the sequences are generated for U2. U2
values a smooth progression of energy as opposed to all other attributes. The following
relationships for 𝑑energy and 𝑑 are expected:

𝑑energy(weighted) ≤ 𝑑energy(best) ≤ 𝑑energy(random)

𝑑(best) ≤ 𝑑(random) ≤ 𝑑(weighted)

Figure 4 illustrates the mean Euclidean distance of the energy attribute 𝑑energy across
three sequences: weighted (wenergy = 0.9), random, and best (with wenergy = 0.5). The
weighted shuffle playlist assigns the specified weights to all attributes and uses Chris-
tofides' algorithm to generate the final sequence. The 𝑑energy of the weighted shuffle
playlist is 0.15. The best shuffle creates a sequence with 𝑑energy equal to 0.18. The ran-
dom shuffle results in a 𝑑energy of 0.24. These results support the expected relationship.
This illustrates that one can use weights to amplify importance of certain attributes over

 16

others. The plot fluctuates closer to 0 in the weighted and best shuffles, as opposed to
wild fluctuations in the random shuffle.

TABLE 2. COMPARISON FOR USER-DEFINED ATTRIBUTES.

Algorithm Mean Distance 𝑑 Run time (s)
Christofides' Algorithm 0.87 3.76

Ward's Method 1.17 2.26
Nearest Neighbor 1.04 2.01

Lower Bound on Performance 1.67 1.97
Upper Bound on Performance 0.59 2.04

Fig. 4. Pairwise Euclidean distances of the energy attribute.

Although U2 wants a sequence in which energy is prioritized, the mean Euclidean dis-
tances must still be considered. The 𝑑 of the three sequences are as follows: the 𝑑 of
the best sequence is 1.14. The 𝑑 of the sequence after the weights were applied is 1.41,
and finally, the 𝑑 of the random sequence is 1.75. These results support the expected
relationship described in earlier. These results show that although preference is given
to the energy attribute in a weighted shuffle, the mean Euclidean distance of all attrib-
utes is still lower than that of the random shuffle. This is illustrated in Figure 5. The

 17

progression of the energy attribute is smoothest in the weighted shuffle, but the overall
progression of all attributes is smoothest in the best shuffle. A user can manipulate a
wide array of variables as input preferences. The results show that objectively, the out-
put sequence delivers what the user expects. Next, we investigate whether these results
also hold subjectively.

Fig. 5. Pairwise Euclidean distances of all attributes.

7 Subjective Testing

In this section, we perform subjective testing to determine the effectiveness of the ap-
proach outlined in previous sections. We populated 3 playlists with 10 randomly se-
lected songs. We then generated a random sequence and a sequence generated by the
Christofides’ algorithm. These two sequences were provided to the subjects (in random
order) and the subjects were asked to rank the pleasantness of the playback sequence,
on a scale from 1 to 10. A score of 1 indicated poor ordering of songs and 10 indicated
a near-perfect order. This was repeated for three pools of 10 song pairs of random/best
shuffles and presented to multiple subjects. Each subject rated 6 playlists. The results
are provided in Table 3.

 18

TABLE 3. SUBJECTIVE TESTING OF VARIOUS PLAYLISTS.

Playlist Shuffle Computed 𝑑 Mean Score (1 – 10)
A Random 2.1 2.7
A Best 1.8 7.5
B Random 2.2 3.7
B Best 1.8 7.7
C Random 2.0 2.6
C Best 1.7 7.4

Table 3 summarizes the results obtained from the subjective testing. All subjects gave
the random shuffle a significantly worse score than the best shuffle. Objectively, the
difference in 𝑑	for random versus best shuffles for all sequences are within the range
0.2 ≤ ∆d ≤ 0.4. There was a decrease in 𝑑	 of approximately 15% after applying the best
shuffle to the sequence. This difference had a significant effect on the song progression
reported by the subjects. The average score received by the random shuffles is 3.00.
Whereas the average score of the best shuffles is 7.53. In all cases, the rating of the best
shuffle outshines that of the random shuffle. Even though a large portion of the popu-
lation would need to be tested before any subjective test can claim to be conclusive,
these preliminary results show that the best shuffle of a playlist subjectively produces
a better gradient of mood from the start to the end of the sequence than a random shuf-
fle. These subjective results also support the objective statistics reported earlier in this
paper.
The best shuffle of playlist A had 𝑑	 = 1.8, as opposed to the 2.0 of the random
shuffle for playlist C, the subjective scores of both playlists differ by 4.9. This indicates
that a random shuffle with a 𝑑	 close to the best shuffle of another list is still vastly
inferior to the best shuffle. 𝑑	 as a standalone indicator of the quality of a sequence may
only be relevant for objective analysis. Although the best shuffle for B resulted in 𝑑	 =
1.8 compared to the 1.7 of C, the average score given to playlist B by the subjects is 7.7
as opposed to the 7.2 of C. We expected the subjective scores to be inversely propor-
tional to 𝑑	, but the results proved otherwise. Although a linear relationship between 𝑑	
and mean score does not exist, it is clear that there is a sharp distinction between a
random shuffle and the best shuffle.

8 Conclusions

Christofides' algorithm significantly outperformed other techniques in generating the
smartest shuffle for songs from a playlist such that pleasantness is optimized via a re-
duction in pairwise Euclidean distance but at the cost of long execution times. It
achieved a mean Euclidean distance of 0.98 for the 100 song playlist. This approxima-
tion algorithm was followed by the Nearest Neighbour algorithm, and Ward's variance
minimization hierarchical clustering. Since playlists can be on the order of 1000 songs
or more, we will investigate if the solution provided by the Nearest Neighbour algo-
rithm is sufficient for our purposes because of its much better runtime.

 19

The best technique (Christofides’ algorithm) was used to shuffle three playlists
of 10 songs each, for subjective testing. These tests indicate that a human can distinctly
differentiate the best shuffle from a random shuffle. The average score of these shuffles
were 7.53 and 3.00, respectively. The subjective results show that the mean Euclidean
distance can be a viable measure of pleasantness.
The next step for this work is to build a mobile application to provide this functionality.
The application would allow the user to import their playlists from various sources and
it would provide the optimal or smartest shuffle of the songs for smoothest gradient.
Another important feature would be to allow the user to enter constraints, which would
affect the smart shuffle. We have shown that with user constraints, our smart shuffle
creates objectively better sequences than a random shuffle. Additional subjective test-
ing would also be performed to determine which attributes are important to a user and
so should be included in the application.

References
[1] Allik, A., Fazekas, G., Sandler, M.B.: An ontology for audio features. In: ISMIR.pp. 73{79

(2016)
[2] Apple: itunes (2018), https://www.apple.com/lae/itunes/
[3] Arora, S.: Polynomial time approximation schemes for euclidean traveling salesman and

other geometric problems. Journal of the ACM (JACM) 45(5), 753-782 (1998)
[4] Askey, W.J., Svendsen, H.: Method and system for sorting media items in a playlist on a

media device (Feb 19 2009), US Patent App. 11/757,219
[5] Bertin-Mahieux, T., Ellis, D.P., Whitman, B., Lamere, P.: The million song dataset. In:

Proceedings of the 12th International Conference on Music Information Retrieval (ISMIR
2011) (2011)

[6] Bonnin, G., Jannach, D.: Automated generation of music playlists: Survey and experi-
ments. ACM Comput. Surv. 47(2), 26:1-26:35 (Nov 2014).
https://doi.org/10.1145/2652481, http://doi.acm.org/10.1145/2652481

[7] Calinski, T., Harabasz, J.: A dendrite method for cluster analysis. Communications in Sta-
tistics-theory and Methods 3(1), 1-27 (1974)

[8] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman prob-
lem. Tech. rep., Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research
Group (1976)

[9] Diaz, F.: Spotify: Music access at scale. In: Proceedings of the 40th International ACM
SIGIR Conference on Research and Development in Information Retrieval. pp. 1349-1349.
SIGIR '17, ACM, New York, NY, USA (2017). https://doi.org/10.1145/3077136.3096471,
http://doi.acm.org/10.1145/3077136.3096471

[10] Gallardo, G., Wells III, W., Deriche, R., Wassermann, D.: Groupwise structural parcella-
tion of the whole cortex: A logistic random effects model based approach. Neuroimage
170, 307-320 (2018)

[11] Google: Google play music (2018), https://play.google.com/music/listen
[12] Held, M., Karp, R.M.: A dynamic programming approach to sequencing problems. Journal

of the Society for Industrial and Applied Mathematics 10(1), 196-210 (1962)
[13] Lehtiniemi, A., Ojala, J.: Evaluating moodpic-a concept for collaborative mood music

playlist creation. In: Information Visualisation (IV), 2013 17th International Conference.
pp. 86-95. IEEE (2013)

 20

[14] Ludewig, M., Kamehkhosh, I., Landia, N., Jannach, D.: Effective nearest-neighbor music
recommendations. In: Proceedings of the ACM Recommender Systems Challenge 2018. p.
3. ACM (2018)

[15] McFee, B., Rael, C., Liang, D., Ellis, D.P., McVicar, M., Battenberg, E., Nieto, O.: librosa:
Audio and music signal analysis in python. In: Proceedings of the 14th python in science
conference. pp. 18-25 (2015)

[16] Mitchell, J.S.: Guillotine subdivisions approximate polygonal subdivisions: A simple pol-
ynomial-time approximation scheme for geometric tsp, k-mst, and related problems. SIAM
Journal on computing 28(4), 1298-1309 (1999)

[17] Mitrovic, D., Zeppelzauer, M., Breiteneder, C.: Features for content-based audio retrieval.
In: Advances in computers, vol. 78, pp. 71-150. Elsevier (2010)

[18] Moat, D., Ronan, D., Reiss, J.D.: An evaluation of audio feature extraction toolboxes. In:
Proc. 18th International Conference on Digital Audio Effects (DAFx-15). DAFx-15 (No-
vember 2015)

[19] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel,
M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D.,
Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine learning in Python. Journal
of Machine Learning Research 12, 2825-2830 (2011)

[20] Rodeker, B., Cifuentes, M.V., Favre, L.: An empirical analysis of approximation algo-
rithms for euclidean tsp. In: CSC. pp. 190-196 (2009)

[21] Shao, B., Li, T., Ogihara, M.: Quantify music artist similarity based on style and mood. In:
Proceedings of the 10th ACM Workshop on Web Information and Data Management. pp.
119-124. ACM (2008). https://doi.org/10.1145/1458502.1458522

[22] Spotify: Spotify (2018), https://www.spotify.com/us/

 167

