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Preface 
 
This volume of proceedings from the conference provides an opportunity for readers to 
engage with a selection of refereed papers that were presented during the International 
Conference on New Music Concepts and Inspired Education. The reader will sample 
here reports of research on topics ranging from mathematical models in music to pattern 
recognition in music; symbolic music processing; music synthesis and transformation; 
learning and conceptual change; teaching strategies; e-learning and innovative learning. 
This book is meant to be a textbook that is suitable for courses at the advanced under-
graduate and beginning master level. By mixing theory and practice, the book provides 
both profound technological knowledge as well as a comprehensive treatment of music 
processing applications. 
The goals of the Conference are to foster international research collaborations in the 
fields of Music Studies and Education as well as to provide a forum to present current 
research results in the forms of technical sessions, round table discussions during the 
conference period in a relax and enjoyable atmosphere.  
36 papers from 16 countries were received. All the submissions were reviewed on the 
basis of their significance, novelty, technical quality, and practical impact. After careful 
reviews by at least three experts in the relevant areas for each paper, 12 papers from 10 
countries were accepted for presentation or poster display at the conference.  
 
I want to take this opportunity to thank all participants who have worked hard to make 
this conference a success. Thanks are also due to the staff of “Studio Musica” for their 
help with producing the proceedings. I am also grateful to all members of Organizing 
Committee, Local Arrangement Committee and Program Committee as well as all par-
ticipants who have worked hard to make this conference a success.  
Finally I want to appreciate all authors for their excellent papers to this conference.  
 
 
April 2019 Michele Della Ventura 
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Playlist Shuffling given User-Defined Constraints on 
Song Sequencing 

Sterling Ramroach1 and Patrick Hosein2 

1Department of Electrical and Computer Engineering 
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sramroach@gmail.com, patrick.hosein@sta.uwi.edu 

Abstract. We consider the problem of track sequencing for a given music 
playlist. We assume that a user chooses a set of desirable songs to form a playlist 
as would be done in applications such as iTunes or Google Play Music. However, 
instead of using the typical random shuffle feature, we introduce what we call a 
smartshuffle option in which the user specifies various constraints that must be 
satisfied when determining the playback sequence. These constraints are based 
on several attributes of the songs. If the user does not provide any constraints, all 
attributes are considered equal. The general computational problem is the Trav-
elling Salesman Problem in Euclidean space. We consider the following ap-
proaches: hierarchical clustering (Ward's variance minimization), nearest neigh-
bor, and an approximation approach (Christofides' 3/2-approximation). We then 
compare performances based on a defined performance metric. We also perform 
subjective evaluation to ensure that the proposed model enhances the listening 
experience of a user. 

Keywords. Playlist shuffling, Music sequencing, Optimization, Data Analytics. 

1 Introduction 

Today music consumers have access to extensive music collections and predetermined 
playlists. These playlists are usually generated and sorted by music producers or disc 
jockeys. The sorting process may place consecutive songs from the same genre or artist 
next to each other or may mix genres harshly. The variation and subjectivity of the 
outcome is a major drawback to the listening pleasure of a consumer. However, tech-
nological advances in the digitization of music has revolutionized the way in which 
users listen to music as they are now able to create personalized playlists. Services such 
as Spotify [22], iTunes [2], and Google Play Music [11], provide a platform for users 
to compile their playlists with a large selection of songs. These collections can be used 
for special events or as background music while studying.  
In this paper we focus on the sequencing of the playback of songs in a given playlist 
such that the transitions are soothing to the user. The attributes used to determine the 
optimal sequencing can be provided with different weights by the user based on their 
personal preferences. Existing research is inconclusive about which combination of at-
tributes and their various weightings lead to a measure of the pleasantness of a song. It 
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is also inconclusive about which combinations of attributes in subsequent songs lead to 
a more pleasant playback sequence. As a result, we use the mean Euclidean distance of 
all attributes of all songs in the playlist as a measure of pleasantness. When user defined 
preferences are considered, this metric will be adjusted to suit the user's preferences. 

2 Related Work and Contributions 

Previous researchers built tools to extract the meta-data from songs [18, 1, 17] and these 
were combined to form large datasets for public usage [5]. Current research focuses on 
assisting the consumer with the generation of personalized lists [6, 15, 21]. The mood 
of these lists are often supplied by the consumer and the playlist is built via the meta-
data of songs in the pool [13]. A common metric used to assess the quality of the playlist 
is user satisfaction. This is quantified by observing listening times, customer return 
rates, track downloads or surveys [6]. Playlists are generated based on the user's listen-
ing history, hit statistics, and song tags. 
The problem addressed in this paper is the ordering of songs in a list that has already 
been created by the user, such that the pleasantness of the sequence is maximized. Cur-
rent means include sorting randomly, alphabetically, on metrics such as number of hits, 
or using the data generated by asking the user to rate each song [4]. Naive ordering such 
as random or alphabetical has a low probability of producing a pleasant sequence, and 
as playlists increase in size, it is not feasible for a user to rate every song. The presented 
solution removes the need for extensive user interaction by retrieving objective metrics 
about each song in the playlist and applying various techniques to achieve the most 
pleasant or smartest ordering of songs. The Nearest Neighbor approach has been shown 
to be superior for playlist generation [14] and is thus included in our investigation. We 
find that the general computational problem is the Travelling Salesman Problem (TSP) 
in Euclidean space and so we also consider the Christofides' 3/2-approximation algo-
rithm [8]. The last algorithm considered is Ward's variance minimization hierarchical 
algorithm as it is known to provide reasonable results with low runtime for problems in 
Euclidean space [10]. 

3 Problem Definition 

We consider the problem in which a user has chosen a set of songs S for a playlist and 
wishes to hear them all. Therefore, we are not concerned with the problem of choosing 
songs for the playlist. Although the user likes all of the songs in the list, the playback 
order is also important. For example, the user may prefer to listen to a sequence of 
several songs from a single artist or genre before switching to another one. We therefore 
address the problem of finding a playback sequence in which all songs are played but 
where the sequence provides the most pleasant experience from beginning to end. No 
user input is required nor are labels or hit statistics used. Pleasantness is a measure of 
the pairwise Euclidean distance between consecutive songs. This definition can be up-
dated via a weighted computation discussed later. 
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We assume that each song has the following meta-data: title, artist, and year released. 
If this meta-data is not available, it can be acquired online. We use Spotify's Web API 
to obtain attributes for each song. The attributes used are, acousticness, danceability, 
duration, energy, instrumentalness, key, liveness, loudness, mode, spechiness, tempo 
and valence (see [9] for descriptions of these). Our objective is to determine a playback 
sequence that minimizes the difference in attributes between consecutive songs. If we 
are listening to a high tempo song we wish to maintain a similar level of tempo in the 
next song but over time the tempo will gradually change. Therefore, we must determine 
a sequence of songs from the playlist that minimizes transitions between consecutive 
songs, across multiple attributes. 
All attributes, except artist and year, have been normalized to values between 
0 and 1. In the case of artist there are no good similarity metrics since the similarity 
between two artists tends to be subjective [21]. We therefore use a simple distance met-
ric for artists called artist difference. If we have two songs by the same artist then the 
artist difference is 0, whereas if the artists are different then the difference is 1. This 
will help cluster songs by a single artist together. In the case of year of release, the 
distance metric between two songs is simply the absolute value of the difference in year 
released, divided by 10. A decade is therefore represented by a value of 1. Using these 
distance definitions we define the distance between two songs as the sum of the square 
of the difference of each attribute. Note that in order to find the optimal solution one 
would have to evaluate all |S|! possible solutions.  
In the general sense, this is the Travelling Salesman Problem (TSP) in Euclidean space 
(NP hard) since we are going from song to song (city to city) with the intent of mini-
mizing the sum of the attribute differences (sum of the distances between cities). We 
need to find a path which includes all songs but where the sum distance metric is min-
imized. The order in which songs are visited is the playback sequence. Some of the best 
known algorithms for this problem are the 3/2-approximation via Christofides' Algo-
rithm [8], and polynomial time approximation schemes (PTAS) by Arora [3] and 
Mitchell [16]. However, due to the lack of evidence supporting the practicality of PTAS 
[20], we focus on Christofides' algorithm. Next, we provide various heuristics for this 
problem with significantly less computational complexities. 

4 Heuristics 

We investigated various approaches to the problem in both its specific application and 
the generalized TSP and evaluated performance in terms of average distance between 
consecutive songs as well as computation time. We need to consider computation time 
since it is always possible to obtain the optimal solution using an exhaustive search but 
this will take a considerable amount of time. In the following sections we assume that 
there are N songs in the playlist, which results in N – 1 song pairs and hence transitions.  
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Christofides' Approximation Algorithm 

Approximation algorithms are used to provide good results in reasonable time. Chris-
tofides' algorithm [8] finds approximate solutions on instances where the distances are 
symmetric and obey the triangle inequality. This technique begins by building a mini-
mum spanning tree from the playlist, followed by a minimum-weight matching algo-
rithm on the set of songs which have an odd degree. After adding both graphs, an Euler 
cycle is created from the combined graph with shortcuts to avoid visited songs. This 
algorithm ensures that the result is at most 3/2 times the optimal solution. Each song is 
represented as a node and distances or the weight of the edges from each song to every 
other song is calculated using the pairwise Euclidean distance. Figure 1 illustrates an 
example of a playlist of 10 songs being represented as a graph before and after applying 
Christofides' algorithm. 

 

Fig 1. The initial graph and solution by Christofides' algorithm. 
 

Hierarchical Clustering 

In this section, a clustering approach to the problem is described. First, the songs are 
divided based on a year range. For example, all 70s songs are put in one cluster, all 80s 
are put in another, etc. Within each of these clusters, sub-clusters are formed based on 
the artist of the songs. Such clusters are only formed if the number of songs by an artist 
exceeds some threshold. All artists that do not satisfy this criterion will have all of their 
songs included in one cluster. Next, sub-clusters are formed from within the artist clus-
ter based on another attribute (e.g. tempo). A threshold is again used and if a sub-cluster 
is smaller in size than this threshold then the cluster will no longer be split. Otherwise, 
the process continues with a new attribute. Figure 2 illustrates an example of a Hierar-
chical Cluster of a 6 song playlist comprised of Barry White (BW) and Rod Stewart 
(RS). 
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Fig 2. Example of hierarchical clustering. 
 
Regarding the Spotify-derived attributes, a threshold of 0.5 is used to split a cluster (i.e., 
songs with a metric value of 0.5 or less are placed in one cluster while the others are 
placed in another). If the present cluster has at least some given number of songs, this 
process is repeated. Finally, the sequence of songs is obtained by traversing the com-
ponents of each cluster going from left to right (or right to left). Note that the members 
of each cluster are similar and thus exhibit low differences. Adjacent clusters are also 
similar since the prior splits kept certain attributes close to each other. Hence, we expect 
the final sequence to have small variations from song to song. 
 

Love's Theme 
I've Got So Much to Give 

I Don't Want to Talk About It 
Some Guys Have All the Luck 

Rum and Coke 
You're My High 

My Heart Can't Tell You No 
Infatuation 

 
The type of hierarchical clustering used is Ward's variance minimization method [7]. 
Euclidean distance is used as the distance function. Ward's variance minimization 
method begins with each song existing as its own cluster. Larger clusters are formed 
sequentially until there is only one cluster of all N songs. However, at each step, the 
two clusters whose union results in the minimum increase in total within-cluster vari-
ance after merging, are combined. For example, if a cluster a is comprised of clusters 
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b and c, and an unused cluster d is to be assessed for its suitability in a merger, the 
variance v(a, d) is calculated as follows: 
 

𝑠𝑞 =
𝑑 + |𝑏|
𝑇

𝑣(𝑑, 𝑏)- +
𝑑 + |𝑐|
𝑇

𝑣(𝑑, 𝑐)- − 	
|𝑑|
𝑇
𝑣(𝑐, 𝑏)-	 

 
𝑣 𝑎, 𝑑 = 	√𝑠𝑞 

 
where T = |b| + |c| + |d|, and |*| is the cardinality of its argument. Variance minimization 
is maintained by choosing to merge with the cluster, which results in the smallest in-
crease in variance. Ward's method is the closest to the Nearest Neighbor in terms of 
properties and efficiency. 

Nearest Neighbor Greedy Algorithm 

The Nearest Neighbor Greedy algorithm uses the Euclidean distance between songs. 
The playback sequence is determined as follows: start at a random song, find the nearest 
song that has not yet been added to the sequence, repeat until all songs are in the se-
quence. 

Lower Bound on Optimal Solution 

The traditional approach is a random shuffle and hence the expected performance of a 
random shuffle can serve as a lower bound. Since the number of possible sequences is 
large we instead obtain an experimental average. Note that a lower bound in perfor-
mance corresponds to an upper bound on the performance metric which is the mean 
Euclidean distance. 

Upper Bound on Optimal Solution 

The upper bound on performance is calculated as follows. Consider all song pairs and 
sort them by their Euclidean distance. The average of the smallest N – 1 pairs will form 
a lower bound on any sequence of the songs and hence can be used as an upper bound 
on performance. Note that these pairs of songs will typically not be a feasible playlist 
since a single song may occur in more than two pairs in the chosen list. 
A well-known upper bound for the TSP is the Held-Karp algorithm [12] which has the 
optimization property that every sub-path of a path of minimum distance is itself of 
minimum distance. This would typically provide a superior upper bound but the run-
time is impractical for a playlist of more than 10 songs. 
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5 Numerical Results 

Dataset and Features 

The dataset was populated by creating a pool of the most popular songs from 1996 to 
2017 and randomly selecting N songs. The resulting dataset contains N = 101 songs and 
information such as the title, artist, and year, are included. Spotify's API is also used to 
obtain the following attributes: acousticness, dance-ability, duration, energy, instru-
mentalness, key, liveness, loudness, mode, speechiness, tempo, time signature, and va-
lence. 
All attributes, except year, artist, and title, were normalized to values between 0 and 1. 
The title of the songs played no role in any of the computation performed. Music is 
often categorized by decades and as such, the difference in a decade is reduced to a 
value of 1 (i.e., the year attribute is divided by 10). Finally, the pairwise Euclidean 
distance between two songs were unchanged if both songs were created by the same 
artist. Otherwise, when calculating the pairwise Euclidean distance, a value of 1 is 
added. These assignments ensure that songs from the same decade and artist are given 
a higher chance of being grouped together in the final sequence. Due to the subjectivity 
of these decisions, provisions were made for user-defined preferences in a later section. 

Discussion 

The performance of all algorithms are compared via two metrics: the resulting mean 
Euclidean distance of the shuffled playlists and the time taken to create the sequence is 
also determined. The mean Euclidean distance 𝑑	of a sequence of N songs is calculated 
by: 

𝑑 = 	
1

𝑁 − 1
𝑑(𝑖, 𝑖 + 1)

6	789:

67:

 

 
where d(q, r) is the pairwise Euclidean distance between songs q and r. The pairwise 
Euclidean distance is calculated using the formula below: 
 

𝑑 𝑞, 𝑟 = 	 𝑑𝑜𝑡 𝑞, 𝑞 − 2	×𝑑𝑜𝑡 𝑞, 𝑟 + 𝑑𝑜𝑡(𝑟, 𝑟) 
 
where dot(a, b) is defined as: 

𝑑𝑜𝑡 𝑎, 𝑏 𝑖, 𝑗, 𝑘, 𝑚 = 𝑠𝑢𝑚(𝑎 𝑖, 𝑗, : ×𝑏 𝑘, : , 𝑚 ) 
 
There are other methods for computing distance but this formulation has two ad-
vantages. The most relevant advantage is if one argument varies, then dot(q, q) and 
dot(r, r) can be pre-computed. The other advantage is its computational efficiency when 
handling sparse data. The equations above were included in scikit-learn libraries [19], 
which were used in these experiments. 
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TABLE 1. PERFORMANCE AND RUN TIME COMPARISONS. 
 

Algorithm Mean Distance 𝑑 Run time (s) 
Christofides' Algorithm 0.98 5.54 

Ward's Method 1.24 2.36 
Nearest Neighbor 1.14 2.08 

Lower Bound on Performance 1.75 2.05 
Upper Bound on Performance 0.66 2.08 

 
Table 1 presents performance and run time results for the various heuritics as well as 
the bounds. Christofides' algorithm attained the best playback sequence with a 𝑑 of 
0.98. The one drawback to this approach is the length of time taken to produce the 
output. As the size of the playlist increases, so too will the time taken to produce the 
most pleasant playback sequence. The Nearest Neighbor algorithm achieved the second 
best 𝑑 of 1.14, and was computed in the second fastest time. The generation of a se-
quence using a value of N for the number of clusters would entail comparing the dis-
tance of the first song to every other song (N – 1) in the list in order to choose the song 
with the smallest d. Each subsequent song would then repeat this process for all remain-
ing songs in the list, until the sequence is completed. The results show that this greedy 
approach is faster than other viable approaches. As expected, the random shuffle 
(Lower Performance Bound) performed the worst, and the Upper Performance Bound 
resulted in an unattainable 𝑑. Figure 3 illustrates the pairwise Euclidean distances be-
tween all songs in sequences produced by a random shuffle and the best shuffle (Chris-
tofides' algorithm). The difference between songs are much higher in the random shuf-
fle. 

6 User Defined Preferences 

In the above sections it was assumed that the user did not provide any preferences (and 
so default values were used). In this section we consider the case where users can adjust 
the weights for the various features. A song s has attributes “acousticness”, “danceabil-
ity”, ..., “time signature”, and “valence”. Each of these attributes are multiplied by their 
respective weights: wacousticness, …wtimesignature, and wvalence, where 0 ≤ w ≤ 1.  
We consider two examples. The user U1 may prefer to place a weight of 0 to “liveness”, 
“duration”, and “loudness” (i.e., wliveness = wduration = wloudness = 0), because these features 
do not seem relevant to the progression of the mood of a playlist. Another user U2 may 
agree with U1's judgment of which attributes seem irrelevant, but can be more inter-
ested in a shuffle where the “energy” of the songs are given preference over the other 
attributes and thus use a weight of 0.9 for this attribute (i.e., wenergy = 0.9). In both cases, 
the weights of all other attributes are by default, set to 0.5. 
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Fig. 3. Pairwise Euclidean distances of random vs best sequences. 

 
We use the best algorithm obtained above (Christofides' algorithm) to illustrate how 
adjustments to the weights of the various features influence the computed sequence. 
Note that if an application is developed for this algorithm then these adjustments can 
be made via simple sliders. Table 2 shows the results of all algorithms on U1's prefer-
ences. It is expected that the 𝑑 for all algorithms would be less than that reported in 
Table 1 due to the reduction in the distance since the contribution of those attributes are 
now zero. Christofides' algorithm maintained the best performance, with a significantly 
smaller 𝑑	than all other techniques but with the worst execution time. The simplicity of 
U1's preferences results in essentially the deletion of three attributes from the dataset. 
Some complexity is introduced when the sequences are generated for U2. U2 
values a smooth progression of energy as opposed to all other attributes. The following 
relationships for 𝑑energy and 𝑑 are expected: 
 

𝑑energy(weighted) ≤ 𝑑energy(best) ≤ 𝑑energy(random) 
 

𝑑(best) ≤ 𝑑(random)  ≤ 𝑑(weighted) 
 

Figure 4 illustrates the mean Euclidean distance of the energy attribute 𝑑energy across 
three sequences: weighted (wenergy = 0.9), random, and best (with wenergy = 0.5). The 
weighted shuffle playlist assigns the specified weights to all attributes and uses Chris-
tofides' algorithm to generate the final sequence. The 𝑑energy of the weighted shuffle 
playlist is 0.15. The best shuffle creates a sequence with 𝑑energy equal to 0.18. The ran-
dom shuffle results in a 𝑑energy of 0.24. These results support the expected relationship. 
This illustrates that one can use weights to amplify importance of certain attributes over 
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others. The plot fluctuates closer to 0 in the weighted and best shuffles, as opposed to 
wild fluctuations in the random shuffle. 
 

TABLE 2. COMPARISON FOR USER-DEFINED ATTRIBUTES. 
 

Algorithm Mean Distance 𝑑 Run time (s) 
Christofides' Algorithm 0.87 3.76 

Ward's Method 1.17 2.26 
Nearest Neighbor 1.04 2.01 

Lower Bound on Performance 1.67 1.97 
Upper Bound on Performance 0.59 2.04 

 

 
 

Fig. 4. Pairwise Euclidean distances of the energy attribute. 
 
Although U2 wants a sequence in which energy is prioritized, the mean Euclidean dis-
tances must still be considered. The 𝑑 of the three sequences are as follows: the 𝑑 of 
the best sequence is 1.14. The 𝑑 of the sequence after the weights were applied is 1.41, 
and finally, the 𝑑 of the random sequence is 1.75. These results support the expected 
relationship described in earlier. These results show that although preference is given 
to the energy attribute in a weighted shuffle, the mean Euclidean distance of all attrib-
utes is still lower than that of the random shuffle. This is illustrated in Figure 5. The 
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progression of the energy attribute is smoothest in the weighted shuffle, but the overall 
progression of all attributes is smoothest in the best shuffle. A user can manipulate a 
wide array of variables as input preferences. The results show that objectively, the out-
put sequence delivers what the user expects. Next, we investigate whether these results 
also hold subjectively. 

 

 
Fig. 5. Pairwise Euclidean distances of all attributes. 

 

7 Subjective Testing 

In this section, we perform subjective testing to determine the effectiveness of the ap-
proach outlined in previous sections. We populated 3 playlists with 10 randomly se-
lected songs. We then generated a random sequence and a sequence generated by the 
Christofides’ algorithm. These two sequences were provided to the subjects (in random 
order) and the subjects were asked to rank the pleasantness of the playback sequence, 
on a scale from 1 to 10. A score of 1 indicated poor ordering of songs and 10 indicated 
a near-perfect order. This was repeated for three pools of 10 song pairs of random/best 
shuffles and presented to multiple subjects. Each subject rated 6 playlists. The results 
are provided in Table 3. 
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TABLE 3. SUBJECTIVE TESTING OF VARIOUS PLAYLISTS. 
 

Playlist Shuffle Computed 𝑑 Mean Score (1 – 10) 
A Random 2.1 2.7 
A Best 1.8 7.5 
B Random 2.2 3.7 
B Best 1.8 7.7 
C Random 2.0 2.6 
C Best 1.7 7.4 

Table 3 summarizes the results obtained from the subjective testing. All subjects gave 
the random shuffle a significantly worse score than the best shuffle. Objectively, the 
difference in 𝑑	for random versus best shuffles for all sequences are within the range 
0.2 ≤ ∆d ≤ 0.4. There was a decrease in 𝑑	 of approximately 15% after applying the best 
shuffle to the sequence. This difference had a significant effect on the song progression 
reported by the subjects. The average score received by the random shuffles is 3.00. 
Whereas the average score of the best shuffles is 7.53. In all cases, the rating of the best 
shuffle outshines that of the random shuffle. Even though a large portion of the popu-
lation would need to be tested before any subjective test can claim to be conclusive, 
these preliminary results show that the best shuffle of a playlist subjectively produces 
a better gradient of mood from the start to the end of the sequence than a random shuf-
fle. These subjective results also support the objective statistics reported earlier in this 
paper. 
The best shuffle of playlist A had 𝑑	 = 1.8, as opposed to the 2.0 of the random 
shuffle for playlist C, the subjective scores of both playlists differ by 4.9. This indicates 
that a random shuffle with a  𝑑	 close to the best shuffle of another list is still vastly 
inferior to the best shuffle. 𝑑	 as a standalone indicator of the quality of a sequence may 
only be relevant for objective analysis. Although the best shuffle for B resulted in 𝑑	 = 
1.8 compared to the 1.7 of C, the average score given to playlist B by the subjects is 7.7 
as opposed to the 7.2 of C. We expected the subjective scores to be inversely propor-
tional to 𝑑	, but the results proved otherwise. Although a linear relationship between 𝑑	 
and mean score does not exist, it is clear that there is a sharp distinction between a 
random shuffle and the best shuffle. 

8 Conclusions 

Christofides' algorithm significantly outperformed other techniques in generating the 
smartest shuffle for songs from a playlist such that pleasantness is optimized via a re-
duction in pairwise Euclidean distance but at the cost of long execution times. It 
achieved a mean Euclidean distance of 0.98 for the 100 song playlist. This approxima-
tion algorithm was followed by the Nearest Neighbour algorithm, and Ward's variance 
minimization hierarchical clustering. Since playlists can be on the order of 1000 songs 
or more, we will investigate if the solution provided by the Nearest Neighbour algo-
rithm is sufficient for our purposes because of its much better runtime. 
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The best technique (Christofides’ algorithm) was used to shuffle three playlists 
of 10 songs each, for subjective testing. These tests indicate that a human can distinctly 
differentiate the best shuffle from a random shuffle. The average score of these shuffles 
were 7.53 and 3.00, respectively. The subjective results show that the mean Euclidean 
distance can be a viable measure of pleasantness.  
The next step for this work is to build a mobile application to provide this functionality. 
The application would allow the user to import their playlists from various sources and 
it would provide the optimal or smartest shuffle of the songs for smoothest gradient. 
Another important feature would be to allow the user to enter constraints, which would 
affect the smart shuffle. We have shown that with user constraints, our smart shuffle 
creates objectively better sequences than a random shuffle. Additional subjective test-
ing would also be performed to determine which attributes are important to a user and 
so should be included in the application. 
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