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Preface

This volume of proceedings from the conference provides an opportunity for readers to
engage with a selection of refereed papers that were presented during the International
Conference on New Music Concepts, Inspired Education and New Computer Science
Generation. The reader will sample here reports of research on topics ranging from a
diverse set of disciplines, including mathematical models in music, computer science,
learning and conceptual change; teaching strategies, e-learning and innovative learning,
neuroscience, engineering and machine learning.

This conference intended to provide a platform for those researchers in music, education,
computer science and educational technology to share experiences of effectively apply-
ing cutting-edge technologies to learning and to further spark brightening prospects. It
is hoped that the findings of each work presented at the conference have enlightened
relevant researchers or education practitioners to create more effective learning environ-
ments.

This year we received 57 papers from 19 countries worldwide. After a rigorous review
process, 24 paper were accepted for presentation or poster display at the conference,
yelling an acceptance rate of 42%. All the submissions were reviewed on the basis of
their significance, novelty, technical quality, and practical impact.

The Conferece featured three keynote speakers: Prof. Giuditta Alessandrini (Universita
degli Studi Roma TRE, Italy), Prof. Renee Timmers (The University of Sheffield, UK)
and Prof. Axel Roebel (IRCAM Paris, France).

I would like to thank the Organizing Committee for their efforts and time spent to ensure
the success of the conference. I would also like to express my gratitude to the program
Committee members for their timely and helpful reviews. Last but not least, I would like
to thank all the authors for they contribution in maintaining a high-quality conference
and I hope in your continued support in playing a significant role in the Innovative Tech-
nologies and Learning community in the future.

March 2020 Mi)(\:/hegg:Z Della V\?Tm{
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Automatic Identification of Melody Tracks of Piano
Sonatas using a Random Forest Classifier

Po-Chun Wang, Alvin W. Y. Su

SCREAM Lab., Department of CSIE,
National Cheng-Kung University,
Tainan, Taiwan
F74046153@gs.ncku.edu.tw

Abstract. In this paper, an identification method of melody tracks of classical
piano sonatas is presented. The tracks which are regarded as ‘melody lead’ are
important cues in music interpretation when symbolic sheet music is concerned,
especially when computer synthesis of emotional and expressive music is desired.
In this work, four new features are proposed. Combined with five conventional
features, there are nine features to be extracted from a standard MIDI file. Then,
random forest classifier is applied to determine whether a measure is ‘melody-
like’ or ‘accompaniment-like’. There are 8§ manually annotated classical piano
sonatas used to validate the proposed method. Over 90% accuracy is achieved
and is 6% higher than the previous work in this art.

Keywords. melody finding, music analysis, music perception, symbolic repre-
sentation

1 Introduction

Expression is usually highly related to the notations on the score such as intensity, ar-
ticulation or pedal use. “‘Melody lead’ was also considered as another expressive strat-
egy independent of the above [13, 14]. The strategy provides an interpretation method
that doesn’t require expression notations which may be absent in many sheet music.
The expression strategy of melody lead is a dominating cue in multi-voiced music [6].
A melody lead voice is usually played louder and precedes the others. It helps listeners
identify the melody line in multi-voiced music environment [7]. This information is
especially important when expressive synthesis of music is desired [2][10].

Synthesis of a piano sonata is a practical example. Piano sonatas are sonatas written for
a solo piano. They usually consist of two to four movements. The first movement is
usually written in sonata form. In piano sonata, music is divided into two parts: melody
and accompaniment. They are usually assigned to the left hand and the right hand, re-
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spectively. Previous work showed that melody lead was found to increase with expres-
siveness [3]. It was also shown that melody lead is caused by dynamic differentiation
in skilled piano performance [8]. Therefore, it is important to identify the melody tracks.

The melody track identification problem was studied in two aspects: audio and sym-
bolic. In digital sound domain, melody lines were extracted from .wav files [1, 4, 12,
17]. Such studies using symbolic formats of music data is less seen.

In symbolic domain, the melody line seldom switches between tracks for most homoph-
ony music. However, melody exists in two or more tracks in many music forms.

Tang et al. [18] proposed a statistical method on selection of candidate melody tracks.
For each track, music was described in a sequence of features including AvgVel (aver-
age velocity), PMRatio (polyphonic ratio), SilenceRatio, Range and TrackName.
Uitdenbogerd and Zobel [19] developed four algorithms for melody line detecting. Li
Liu and Cai Junwei [9] extracted melody line based on their melody similarity theory.

When the melody appears in more than one tracks, the identification becomes more
complicated. It can be examined as a melody/accompaniment classification problem [5,
16]. Friberg [5] proposed twelve features, including five pitch features, two 10l fea-
tures, articulation features, timbre feature, and so on. A Support Vector Machines
(SVM) was applied to classify these two classes. In David Rizo’s [16] work, melody
tracks were judged by empirical experiences and features of each track. Five features
with twenty descriptions were extracted. They were in category of track information,
pitch, pitch intervals, note durations and syncopation. For each track, the probability of
being melody or accompaniment was judged by a random forest classifier.

Previous works have been tested for genres of music such as pop, jazz and classical, but
none of them has ever been tested for piano sonatas. In most piano sonatas, the melody
usually alternates between tracks. Sometimes the melody can also exist in both tracks.

Methods such as Friberg’s [5] required additional information such as expression nota-
tions. Therefore, Rizo’s work [16] is used for comparison because it can recognize mel-
ody(s) of multi-track standard MIDI files. The accuracy of this work is 6 percent higher
than Rizo’s when the first movement of the eight manually annotated classical piano
sonatas used in this work are tested.

The rest of the paper is divided into three main sections. First, the methodology on
identifying and selecting the melody tracks is introduced. Next, a computer simulation
is performed by using eight piano sonatas. The method proposed in [16] is also tested.
Finally, conclusion and future work are given.
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2 Method

In this work, each measure is treated as a segment. The proposed feature vector ¥ is
described by

v = [FR, SI, LCR, SDD, SDI, NR, DNC, CN, RP]. €))
These nine features are respectively Floating Rate (FR), Significant Interval difference
(SI), Level Crossing Rate (LCR), Standard Deviation of Duration (SDD) and Interval
(SDI), Note Rate (VR), Distinct Note Count (DNC), Chord Number (HN) and Repeated
Pattern (RP). The detail of each feature is shown below. P; represents the i-th pitch. S
represents the total note number of a segment. D represents the interval sets where

In the following context, the notation ||-|| represents the size of the set.

Features
Floating Rate (FR): This is the average of pitch differences in a segment.

5-1
1
FR=2) (Piy =P G)
i=0

Significant Interval difference (S/): This shows the significant interval change in a
segment. Intervals greater than three semitones are counted.

SI=|l{x €D |x=>3}| 4)

Level Crossing Rate (LCR): This describes the number of notes crossing mean value
M, which M = <3523 P,

LCR = ||[{P;|(Piy1 — M)(P; — M) < 0}, )
0<i<S§S-1

Standard Deviation of Duration (SDD): M, represents the mean of the durations of
the notes in the segment, where L; is the duration of the i-th note.

M, = %Z L, ©)

f1
SDD = §|Li—ML|2, 0<i<S-1 (7
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Standard Deviation of Interval (SDI): M is the mean of MIDI pitch numbers,
where M = iZf;(,l P,.

h
SDI = ya—Mﬁ 0<i<S-—1. 3

Note Rate (VR): NR is the number of notes per segment.

total note number

&)

unit time

Distinct Note Count (DNC): DNC is the amount of all MIDI pitch numbers in a seg-
ment.

Harmonic interval Number (HN): A harmonic interval event is identified when two
or more than two notes appear simultaneously. HN counts the number of such events in
a segment.

Repeated Pattern (RP): RP is designed to detect the Alberti bass. It is a style of ac-
companiment, which usually has repeated interval sets in a segment.

5\
1 - L -
Fig. 1. The D of these notes is [7,—3,3,—7,7,-3,3].
| — T [ | o
e

Fig. 2. The D of these notes is [-1,—2,7,3,2,—-7,-2].

RP is calculated in the following steps. First, two vectors in (10) and (11) are consid-
ered.

_(Ppy1i—P,  0<n<S (10)

u[n] = { 0, otherwise

Poi1— B, 0<n<j .1 (11)
= <-
U [n] { 0, otherwise forl<js 2 5.
For all j, cross-correlation between u, and u, is computed and resampled.

j

ci[n] = Z uy[m]uy[n+mj . (12)

m=0
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C.

i[n] = ¢i[i X n]. (13)

Thus, RP is computed as follow:

RP:min<{|Z§§[[I;]]—1| | OSnS}Z}) (14)

k=0

where 1 <j < % S. When u, is the perfect repetition of u,, RP = 0.

Taking Fig. 1 as an example, RP = 0.76, while RP of Fig. 2 is 2.04. It is obvious that
Fig. 1 has more RP potential than the Fig. 2.

This vector u, is seen as the input to the classifier. A track will be identified as either
‘melody-like’ or ‘accompaniment-like’ through a random forest classifier.

The random forest classifier [11]

A random forest classifier is an ensemble of decision trees. Trees are weighted and
trained by various sub-samples of dataset. It reduces the over-fitting problem on deci-
sion tree classifier. In our work, the Scikit-learn [15] package is used to build a random
forest classifier. It contains 50 trees and the Gini impurity is considered on nodes split-
ting. The result could be seen as the probability of containing melody-line in a segment
in our case.

3 Results
Datasets

Eight classical piano sonatas list in Table I are used. Only the first movement of each
piano sonata from four classical period composers is selected. Three professional mu-
sicians/composers from National Taiwan Normal University, Taiwan were invited to
annotate the scores.

The scores are separated into left and right-hand tracks. For each measure, the track(s)
containing perceived melody are identified and the rest of tracks are considered as ac-
companiment. An example is shown in Fig. 3.
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TABLE I: INFORMATION OF THE PIANO SONATAS.

Score Composer Measures Time
signatures
b 41 piano sonata No.4 in E-flat major Op.7 Beethoven 361 6/8
b 20 1 piano sonata No.20 in G major Op.49, Beethoven 122 4/4
No.2
c 40 1 piano sonata in G major, Op.40, No.1 Clementi 209 4/4
c 471 piano sonata in B flat, Op.47, No.2 Clementi 132 4/4
h 38 1 keyboard sonata No0.38 in F major, Haydn 128 2/4
Hob.XVI:23
h 50 1 keyboard sonata No.50 in D major, Haydn 103 4/4
Hob.XVI:37
m_7_1 piano sonata No.7 in C major, K.309 Mozart 155 4/4
m 16 1 piano sonata No.16 in C major, K.545 Mozart 73 4/4
0 b mﬁ FF%F\ 11 F%F F\ 1 ’\tb’ﬁ'[‘? r “.'? e //:\\
bt O 1= I = — —— = i — —— | e 4 .
g == = = ! j:g
oJ 1
0 bt o W .~ = 2
73 ) —— —— 0 i 03 ’ & 3 ——
&>y i = - g ’ . ﬁ—‘f_’
o F\_/[ I T ¥
A
= 8 4
Plp }P !—-;Q 7r‘t|' fff&:- m-;.&

ity

Fig. 3. The yellow parts are annotated by the scorers as ‘melody’. It is noted that both tracks of the last three

measures are annotated as ‘melody’. The rest of the score is annotated as ‘accompaniment’.

Experiment

80% of the measures of the sonatas are randomly split as the training set, and the other
20% are used as the test set. There are 2052 (1283*2*0.8) measures used as the training
data. The random forest classifier takes the features vector v of a segment described in
the previous section and returns the probability of being a melody-like segment. In this
work, a segment is equal to a measure. In the experiment, precision, recall and F-meas-
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ure are shown. True-positive (TN) is the percentage of melody-like segments success-
fully classified. False-positive (FP), true-negative (TN) and false-negative (FN) are de-
fined accordingly. The accuracy is calculated by (15).

TN +TP
TN+TP+FN +FP

accuracy =

(15)

The results are compared with Rizo’s [16] method. Table II shows the comparison of
the accuracy of each method. Table III shows the comparison of F-measure.

TABLE II: THE COMPARISON OF ACCURACY.

score accuracy accuracy
(This work) (Rizo)
b 41 0.84 0.84
b 20 1 0.94 0.92
c 401 0.9 0.87
c 471 0.85 0.87
h 38 1 0.83 0.83
h 50 1 0.86 0.64
m_ 7 1 0.94 0.82
m_16_1 0.97 0.87
average 0.9 0.83

TABLE III: THE COMPARISON OF F1-SCORE.

score accuracy accuracy
(This work) (Rizo)
b 41 0.86 0.85
b 20 1 0.94 0.92
c 401 0.9 0.87
c 471 0.87 0.87
h 38 1 0.87 0.85
h 50 1 0.91 0.73
m 7 1 0.94 0.85
m_16_1 0.97 0.88
average 0.91 0.85
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The average accuracy and F1-score of this work are about 6% higher than Rizo’s. The
worst F1-score of this work happens in b_4 1, which is 86%. The worst case of Rizo’s
work happens in h 50 1, which is only 73%.

Discussion

In this paper, new features such as RP, HN, SI, LCR are proposed in this work. Table
IV shows that the average accuracy without four new features is decreased by 1.3%.

TABLE IV: THE COMPARISON OF REMOVING FEATURES.

Features accuracy
¥ without RP, HN, 88.7%
SI, LCR
v 90%

Though there are five features that are also used in [16], it is noted that these features
are modified in this work. For example, DNC is the combination of the “Track Infor-
mation” category and the “Pitch” category, and NR contains more than two descriptions
in “Note durations” including the longest duration and the mean duration. These modi-
fications also account for the improvement over the method proposed in [16].

4 Conclusion

In this work, the melody tracks of each measure are identified in piano sonatas. Nine
features including FR, SI,LCR,SDD,SDI, NR,DNC,CN, RP are employed. The scope
of melody track identification is narrowed from a song to a measure because piano so-
natas aren’t homophonic. For each measure, a random forest classifier is used to classify
it into a ‘melody-like’ class or an ‘accompaniment-like’ class. The experiment shows
that this work is about 6% more accurate than the method in [16].

In the future, the first attempt is to add more piano sonatas in the training set. In addition,
it is desired that the segment size can be further reduced to a beat. Furthermore, it is
expected to implement the identification method on different types of music, such as a
string quartet and a symphony.
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