
Controlling Sound Parameters Using Natural Language Expressions

Jan-Torsten Milde
Fulda University of Applied Sciences, Digital Media Working Group, CS Department

milde@hs-fulda.de

ABSTRACT

This paper describes the ongoing development of a system,
that allows to specify sound parameters of a virtual syn-
thesizer using natural language. A sound generated may
be described by the user with complex adjective phrases.
These instructions are parsed and a semantic representa-
tion is created, which in turn is mapped to control param-
eters of the software synthesizer. The system system is
the basis for more elaborate investigation on the relation
between sound quality specifications and natural language
expressions.

1. INTRODUCTION

In this research we like to investigate on the problem of
describing sound quality using natural language expres-
sions. Specifically we are interested how complex adjec-
tive phrases can be used to specify a sound. It is currently
not clear, if this is possible at all. No satisfactory empirical
data has been collected so far. Therefore we have started to
set up a test system, which allows us to perform interactive
user experiments. These user tests have been carried out
during the last three months and we are still in the process
of analyzing the result.

It can be observed, that musically illiterate people tend
to describe sounds and music using every day language.
Without detailed knowledge of musical terminology or even
know how of the internal functions of a modern synthe-
sizer (see figure 1), a large variety of adjectives is used to
describe the sound quality instead.

A common example would be the use of the adjective
fat. Sounds have to be fat, the bass line of a modern dance
track has to be fat. If a specific song gets a mutual positive
evaluation within a peer group, it will be asigned the pred-
icate voll fett. The adjective fat has also been adopted by
the marketing departments of the music industry. One of
the nicest example is the string synthesizer Streichfett by
Waldorf 1 .

There seems to be a common understanding, whether a
sound is fat or not. Nevertheless, when it comes to gener-
ating a sound using a standard synthesizer, there is no knob

1 At least within the German speaking community the name often rises
the question, whether Waldorf is really serious about this choice.

Copyright: c©2014 Jan-Torsten Milde et al. This is

an open-access article distributed under the terms of the

Creative Commons Attribution 3.0 Unported License, which permits unre-

stricted use, distribution, and reproduction in any medium, provided the original

author and source are credited.

controlling the fatness of a sound. When designing a bass
sound, fatness is sometime attributed to minimal changes
of the pitch of a secondary oscillator.

2. IDENTIFYING SOUND IN CURRENT SYSTEMS

Figure 1. A modular analog synthesizer by Doepfer pre-
sented on this year’s Musikmesse in Frankfurt. The im-
pressive interface represents the internal functional com-
plexity of the system, inviting the user to experiment with
the system. Relating a certain system configuration to a
specific sound or vice verse is hard.

In current systems two main approaches for identifying
sounds can be distingushed: naming conventions and hier-
archical meta data.

Naming conventions basically associate an arbitrary string
with a certain system configuration and thus with the sound
produced. In order to find the sound, the user has to enter
(part of) the name string. This restricts the selection of
possible sounds. As a result, the user is presented a filtered
list of possible hits which then can be loaded by the system
and eventually be tested by user. Figure 2 shows a stan-
dard interface with a typical input mask. Here the search
is performed incrementally, thus restricting the number of
possible sounds as the users types letter by letter 2 .

The second approach for identifying sound quality is the
use of hierarchical meta data. Here sound describing terms
are organized in a hierarchy. General categories are re-
cursively refined by sub categories. The MediaBay uses

2 The presented search interface (MediaBay) is part of the Cubase soft-
ware and is connected to the halion5 system. Also it has to noted that the
halion5 system is a software sampler, not a software synthesizer.

mailto:milde@hs-fulda.de
http://creativecommons.org/licenses/by/3.0/


Figure 2. Sound search of the halion5 software synthe-
sizer. The user has to type in sound names into a very tiny
input field. Sounds are listed in a tabular view and can be
ordered according to different column categories.

four category levels: category and subcategory, style and
character. The category is organized around classic instru-
mental groups found in orchestras and pop and rock bands.
Style and character refer to different types of music, with
the finest category finally trying to somehow describe the
character of the sound. While in the first three levels nom-
inal phrases are used to set up distinct classes, in this cate-
gory we find adjectives to capture the mood or the expres-
sion of the sound. Figure 3 shows an example of a search
hierarchy.

Both approaches are easy to understand and effective to
organize large quantities of sounds, but still make it very
hard to find a specific sound. An obvious problem are
sound names. These names are almost completely arbi-
trary. Sounds are described either metaphorically or by
the underlying technology or by specific music genre and
in many other ways. A good example is the guitar sound
named ”Brian Will Rock You”, which obviously refers to
a sound comparable to the one found in the song ”we will
rock you” by Queen with the guitar played by Brian May.
How would one ever come up with idea to search for ”Brian”
?

The meta hierarchies are also problematic. Again cate-
gory names are arbitrary. This is not so much of a prob-
lem, as the number of terms is usually quite small. On the
other hand categories are used to clearly discriminate the
sounds. Either a sound is in a category or it is not. When
you are trying to find that ”fat bass” with the category sys-
tem, then you might be faced with fact, that you simply do
not know, which category the sound is in: it could be an
analog upright bass, a monophonic bass using FM synthe-
sis or a filtered brass sound.

As a result both approaches force you to painfully step
through thousands of sounds on your hard disk desper-
ately seeking for the right one for your current arrange-
ment. Even worse, you have used the sound before, but
just cannot remember the name or the category.

Figure 3. Hierarchical sound search for the halion5 soft-
ware synthesizer. Categories are presented in a tabular
way, starting with highest hierarchical level in the first col-
umn. For each level a list of possible values can be selected
by the user. The hierarchy filters the result list by perform-
ing a logical AND operation.

3. THE ARCHITECTURE OF THE SOFTWARE
SYNTHESIZER

In order to perform interactive user tests we developed a
software synthesizer that incorporates both a standard con-
trol interface and a natural language input system, allowing
to describe the sound using complex adjective phrases.

The test system is based on a (simple) standard synthe-
sizer that has been implemented using the Processing pro-
gramming environment (see [1], [2]). This environment is
specifically suited for the development of visually attrac-
tive, interactive systems. It is often used within the field of
computer based generative art and also offers a large num-
ber of extension libraries. These include a simple to use
audio library (Minim), allowing to easily setup a modular
synthesizer consisting of the standard components: oscil-
lators, filters, amplifiers.

For the test system we developed a monophonic synthe-
sizer. The system consists of a DCO generating five varia-
tions of waveforms (sine, square, saw, triangle and noise).
The pulse width of the square waveform can be adjusted.
In addition it is possible to create a waveform by summing
the first n harmonics with random weights.

The signal is routed into the DCF, a simulation of a 24dB
Moog resonance filter. The filter provides three filter char-
acteristics: a low pass filter, a high pass filter and and a
band pass filter. In addition, the cutoff frequency can be
set and the resonance strength can be specified.

Once the signal has been filtered it is sent to the DCA. As
usual, this step allows to control the loudness progression
of the final signal.

The DCF and the DCA are each being further controlled
by a four step ADSR envelope which is triggered by note-
on/note-off events. Two more LFO have been incorporated
into the system. One LFO modulates the DCO in order to
realize a vibrato, the second LFO is used to further modu-
late the frequency of the DCO, the cutoff frequency of the
DCF and the gain of the DCA 3 .

The final output of the oscillator-filter-amplifier chain is
sent to an effect unit consisting of a simple delay. Here

3 To be precise here: the gain is controlled independent from the DCA
in gain module chained behind the DCA.



the delay time and the amplification factor can be set. The
complete system architecture is displayed in figure 4.

Figure 4. The system architecture of the synthesizer sys-
tem. The architecture follows a standard configuration
found in many systems: the oscillator generates the basic
wave form, which is filtered by a DCF. A subsequent DCA
controls the volume. In addition 2 LFOs and an ADSR
further control volume and modulation of the generated
sound.

We tried to design the user interface of the test system ac-
cording to current industry standards. Almost every physi-
cal system on the market is using dedicated hardware con-
trols (knobs, sliders, buttons etc.) to interact with the cen-
tral internal parameters of the sound generating system.
This approach has been adopted by software synthesizers:
the majority of the virtual instruments displays a user in-
terface which copies the look and feel of a r̈eals̈ystem. As
our test system has a relatively simple internal structure,
the complexity of the control interface is not very high.
Nevertheless it provides all the elements, that are found in
bigger systems. We think, that we have found a good level
of abstraction for the test system. It is versatile enough
to generate an interesting variety of sounds, still simple
enough to be explained to the test participants.

Figure 5. The interface of the test system. The graphical
user interface mimics the physical appearance of a simple
analog synthesizer, thus creating compatibility with stan-
dard commercial systems. The evaluation unit is used to
collect user data during the naming process.

4. SOUND AND LANGUAGE

As a starting point for the development of the natural lan-
guage interface, we generated a list of adjectives (see table
1) based on our own experience in describing sounds. This
list has not been empirically checked. It is solely based on
personal preferences. While this approach might be ques-
tionable, we found that the number of adjectives quickly

rises and becomes quite diverse, when taken from user in-
terviews. This result indicates that it might not be feasi-
ble to allow unrestricted use of every day language for the
sound description. Instead controlled language (see [3])
could be used, reducing the vocabulary to a predefined sub-
set.

System parameter Adjective Antonomy
volume laut leise
filtering, waveform hell dunkel
filtering, waveform schrill dumpf
modulation, vibrato pulsierend monoton
ADSR, waveform hart weich
modulation, filtering rhytmisch melodis
ADSR, delay kurz lang
modulation ansteigend abfallend

Table 1. A subset of the list of basic adjective pairs.
The table lists adjectives with their semantic counterparts
(antonym) and shows how they could be related to sound
parameters of the test system.

Once the basic set of adjectives had been chosen, we tried
to expand the possible vocabulary. This was achieved by
using the GermaNet system (see [4]). GermaNet is the
German WordNet version. In this data base more then
100000 German lexical items are stored with their concep-
tual and lexical relations encoded. With this system it be-
comes quite simple to find adjectives with related meaning
(synonyms) and adjectives with opposite meaning (antonyms)
. Using this approach, we were able to extend the basic list
of descriptive adjectives to more than 150.

4.1 NLP analysis and generation

The standard user interface of the test systems has been
extended by incorporating a natural language input field.
Using this field, the user is able to enter complex adjective
phrases (currently in German). These phrases are parsed
by the underlying NLP (Natural Language Processing) sys-
tem and a (complex) attribute value matrix is set up. This
matrix is used as an internal semantic representation of
the user’s sound description and will be mapped onto the
sound parameters.

The underlying parser is using a lexicon driven approach.
The lexicon is a list of words, which are associated with
certain attribute value pairs, describing their semantic value.
In our case semantic value refers to sound quality param-
eters. These parameters will later be mapped onto system
parameters.

We are providing a very loose phrase structure grammar
for the sound descriptions. Basically a user is allowed to
enter any combination of adjectives followed by an op-
tional category name. This combination is referred to as an
AP (Adjective Phrase). It is possible to build more com-
plex instructions by connecting multiple APs with con-
junction (and) or disjunctions (or). Finally, adjectives can
be further differentiated by modifiers. These could be nega-
tions (not) or gradations (more, less). So far we do not pro-
cess the adjectives themselves. Comparative or superlative



Figure 6. Attribute Value Matrix. In this example infor-
mation of different parts of the user’s sound description
has been collected. The unification process integrates the
parts, joins compatible information and thus fills the slots
of the AVM.

word forms have to be stored in the lexicon as a discrete
lexeme. The simplified underlying grammar could be de-
scribed by the following phrase structure rules:

S -> AP*
AP -> AP CONJ AP
AP -> ADJS N
AP -> ADJS
ADJS -> ADJS, ADJS
ADJS -> MOD ADJ
ADJS -> ADJ

ADJ -> lexicon_lookup
N -> lexicon_lookup
CONJ -> lexicon_lookup
MOD -> lexocon_lookup

The lexicon lookup process will collect the attribute-value
data of the given adjective, noun or modifier. These partial
attribute value matrices (AVM) are the combined by the
system to a single big AVM. As the constituent structure
created by the parser is relatively shallow, we mostly ig-
nore it when unifying the AVM. An exception to this rule
are the modifiers. These have to be combined with the
adjectives they modify, hence the phrase structure is used
here to guide the unification process (see [5]).

4.2 Relating to sound parameters

Once the AVM has been constructed the final step of ac-
tually modifying the sound parameters of the synthesizer
has to be performed. Again the mapping between these
two structures could be freely negotiated. In order to get
a working system configuration, we have used a set of 50
basic sounds in 7 different categories. We have tried to
find appropriate description using the system’s grammar
and have then mapped the resulting AVM to the actual pa-
rameters of the system.

The AVM stores the information in a set of categories (see
table 2). These categories try to generalize the information
of multiple adjectives thus integrating the intended effect
of the user’s sound description.

AVM Sound parameter
LAUTHEIT: volume
ANSTIEG: percussive
TON: harmonics
DAUER: duration
SCHWINGEND: modulation
TON: feedback
SCHWINGEND: + TON: vibrato
SCHWELLEND: tremolo

Table 2. Mapping between the semantic categories and the
sound parameters of the test system. The categories are
created as the result of the analysis of the natural language
expression. Currently the categories take discrete values.

4.3 User tests

During the last three months a set of user tests had been
conducted. In order to elicitate the data, two consecutive
tests had to be taken by each of the participants.

1. The participants have been asked to describe the sound
quality of a number of predefined sounds.

2. The participants have been asked to create a sound,
following a a given description.

A total of 25 participants (aged 21 to 27) have taken the
tests, 15 male students, and 12 female students. The par-
ticipants were introduced to the software synthesizer and
were able to experiment with the system for 60 minutes.
Then each contestant was asked to fill out a questionaire
that was used to collect the relevant personal meta data.
Finally the general hearing ability of the contestants was
checked, specifically the perceived pitch range of each per-
son had been measured.

After that a 10 minute break in a silent environment took
place. This was followed by the first test. Here a set of
30 different sound was presented to the participant. Each
sound had to be described with a set of predefined adjec-
tives. In order to estimate the influence of each adjective,
the participants were asked to grade the adjective with the
build in user interface of the software synthesizer. In the
second phase of the test, the participants were asked to de-
scribe the differences between two sounds. They were able
to switch back and forth between the sounds and had to de-
scribe the differences, again with a graded set of predefined
adjectives.

The second experiment took place after two weeks. A
set of 15 descriptions of the first experiments had been
selected for each participants. Five of those descriptions
were taken from the participant’s data set. The remaining
10 descriptions were a set of randomly chosen descriptions
presented to all of the participants of the second experi-
ment. The student were asked to recreate a sound that re-
sembled that description.

The complete data set has been stored in an XML anno-
tated data base. We are currently preprocessing the data in
order to analyze and visualize the results.



5. CONCLUSIONS

In this paper we describe the development of a test system
for specifying sound parameters using natural language de-
scriptions. The test system is fully functional: the software
synthesizer allows for the dynamic creation of a wide range
of different sounds. The graphical user interface follows
current industry standards and makes it simple to modify
all the sound relevant parameters. By integrating a natural
language parser, sound description can be entered, result-
ing in parameter changes of the system. A set of user tests
have been carried out. The data has still to be analyzed.

With the system a very good experimental basis has been
created to further investigate the relation of natural lan-
guage descriptions and sound parameters. If sound de-
scription could be reliably mapped to sound configurations
then more elaborate multi modal user interfaces for virtual
instruments could be developed.

Acknowledgments

This research has been funded by the internal research com-
mission of the Fulda University of Applied Sciences.

6. REFERENCES

[1] C. Reas and B. Fry, Processing: A Programming
Handbook for Visual Designers and Artists. The Mit
Press, 2007.

[2] M. Vail, The Synthesizer: A Comprehensive Guide To
Understanding, Programming, Playing, And Record-
ing The Ultimate Electronic Music Instrument. Ox-
ford University Press, 2014.

[3] T. Kuhn, “A survey and classification of con-
trolled natural languages,” Computational Linguistics,
vol. 40, no. 1, pp. 121–170, March 2014. [On-
line]. Available: http://www.mitpressjournals.org/doi/
abs/10.1162/COLI a 00168

[4] C. Kunze and L. Lemnitzer, “Germanet - representa-
tion, visualization, application.” in Proc. LREC 2002,
main conference, Vol V, Gran Canaria, 2002, pp. 1485–
1491.

[5] S. Müller, Head-Driven Phrase Structure Gram-
mar: Eine Einführung, 3rd ed., ser. Stauf-
fenburg Einführungen. Tübingen: Stauffenburg
Verlag, 2013, no. 17. [Online]. Available: http:
//hpsg.fu-berlin.de/∼stefan/Pub/hpsg-lehrbuch.html

http://www.mitpressjournals.org/doi/abs/10.1162/COLI_a_00168
http://www.mitpressjournals.org/doi/abs/10.1162/COLI_a_00168
http://hpsg.fu-berlin.de/~stefan/Pub/hpsg-lehrbuch.html
http://hpsg.fu-berlin.de/~stefan/Pub/hpsg-lehrbuch.html

	 1. Introduction
	 2. Identifying sound in current systems
	 3. The architecture of the software synthesizer
	 4. Sound and language
	4.1 NLP analysis and generation
	4.2 Relating to sound parameters
	4.3 User tests

	 5. Conclusions
	 6. References

