
  

  
Abstract— Since Barry Truax’s early pioneering work, the 

increasing availability of powerful and inexpensive desktop 
computers has led many composers, researchers and artists to 
experiment and work with granular synthesis and/or 
granulation processes. During the last two decades a stream of 
granulation software has appeared, but despite this spread, all 
these applications have important limitations in terms of 
efficiency, usability, flexibility and control. This paper 
describes an abstraction of an efficient and flexible granular 
processing system built into the Max/MSP environment. 
 

Index Terms— Abstractions, Digital Sound Processing, 
Max/MSP, Signal Processing. 
 

I. INTRODUCTION 
Although there are many sound granulation algorithms 

that have spread widely since the early experiments of the 
Canadian composer Barry Truax [1]-[2]-[3], it is not 
possible to find a system that does not show at least one of 
the following limitations (2-3 in most cases): 

- closed architecture [4]-[5]-[7]-[9], 
- with fee [5]-[7], 
- no real-time support [6],  
- pre-recorded samples only [7], 
- implementation with a large use of externals [8], 
-  C or C++ programming skills needed for the algorithm 

development [9]-[10]. 
 
The abstraction presented in this paper has the aim to 

overcome all these limitations by implementing a real-time 
granulation system into the Max/MSP environment [11].  

I started the development from a basic algorithm that I 
had previously implemented in Max/MSP and that I used in 
my piece Krònos/Kairòs, for flute, harp and live electronics 
(2010-11) [12].  

The algorithm described in the abstraction has the 
following features: 

- from 1 to N voices - depending on the CPU, 
- dynamic pitch transposition for each voice, 
- dynamic amplitude for each voice, 
- dynamic playback (portion of file) for each voice, 
- dynamic phase for each voice. 
 

II. OVERVIEW 
At the highest level the system is organized into 3 main  
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Fig. 1. System overview. 
 
patches: Buffers patch, Data controls patch and Poly patch 
(Fig. 1).  

The first 2 patches generate the overall audio and control 
signals, while the third is a set of multiple instances of the 
Grainpatch (each instance processes only the data addressed 
to it). The number of instances depends on the number of 
grains - or voices - you want to generate and it is clearly 
proportional to the computing power of the processor. 

 

III. BUFFERS PATCH 
The Buffers patch is the algorithm section where the 

processes of loop recording and window function generation 
take place; in other words, it is the patch where the audio 
data are stored into the memory buffers.  

A. Loop recording 
In order to enable loop recording and audio data playback 

from any points of the buffer, the system has been based on 
the use of two parallels recorders. These recorders are 
identical in size (30000 ms), but they have an offset of half 
of their length between their recording points (recording 
heads, Fig. 2).  

 
 

 
Fig. 2. Buffers patch. 
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Fig. 3. Audio files variables. (a) minimum starting point. (b) 

maximum starting point or playback pointer. (c) recording pointer. 
(d) effective starting point after randomization. (e) effective ending 
point. (F) starting range. (G) cartridge delay. (H) file portion 
played.  
 

This is a fundamental operation that allows the 
reproduction of those grains that reside in the memory limit 
of a buffer; a task not admitted by the Max/MSP players. 
For example, it would be impossible to reproduce a grain of 
100 ms with the starting location at 29980 ms and the 
ending location at 80 ms of the first buffer, so you need to 
access to it from the second buffer (delayed) where the 
starting location is at 14980 ms while the ending location at 
15080 ms.  

 

B. Window function generation 
The third memory buffer inside the patch is reserved to 

the window function storage. You can generate the function 
and store it into the buffer or simply recall a saved one from 
the hard drive. 

 

C. Data flow 
The audio signal from the input is recorded into the  

identical buffers (30000 ms), GRAINbuffer1 (in sync) and 
GRAINbuffer2 (delayed by 15000 ms in location points); the 
recording is in loop mode and the start is automated by the 
DSP state.  

The pointer (the clock of the recording head) of the first 
recorder is passed through a gate - to allow the freezing - 
and then addressed to the output. 

 

IV. DATA CONTROLS PATCH 
Inside the Data controls patch the variables are set with 

faders, tables or preset numbers and then addressed to the 
corresponding output and to each grain (voice) inside the 
poly~ object.  

There are 7 types of variables sent to each voice: start 
range, cartridge delay, metro, metro delay, grains length, 
amplitude and pitch-shifting ratio. 

 

A. Start range 
It is the range of the buffer memory where there are the 

starting points of a voice, or in other words, the portion of 
time where you put the random starting point of each grain 
(Fig. 3). If you set it to zero, there is not randomization and 
the effective starting point (d) matches with the playback 
pointer (b); in this case there is only the cartridge delay (G) 
between the recording pointer (c) and the playback pointer 
(b).  

 
Fig. 4 Time variables. (1… N) voice number. (pI… pN) metro 

pulses. (r1… rn) metro delay for each voice. (QI… QN) period or 
pattern length. 
 

B. Cartridge delay 
It is the delay time between the playback pointer (b) and 

the recording pointer (d). It should be set according to the 
input/output vector size, the signal vector size or to aesthetic 
choices.    
 

C. Metro 
Like many other types of processing, granulation takes 

effect if managed in time with the best rhythmic detail; for 
this reason I have decided to organize grains as the 
repetition of a musical pattern (Fig. 4). In this way, Metro 
(p) is the trigger signal that represents the beginning of each 
pattern and which occurs in each time period (Q). 
 

D. Metro delay 
It is the delay time (r) between the metro pulses (p) and 

the starting point of a grain (d). For example, if you set the 
metro delay to zero for any voice, the grains are played 
simultaneously (homo-rhythmic grains). 

 

E. Grains length 
It is obviously the length of the grains, the only variable 

shared by all voices; it could be from 1 ms to x, where x is 
the buffer size minus the cartridge delay (G). 

 

F. Amplitude 
It is clearly the amplitude (in dB) of each grain. 
 

G. Pitch-shifting ratio 
It is the ratio of a grain pitch to its original pitch. For 

example, an octave upper shifting is equivalent to a 
pitch-shifting ratio of 2. 

 

V. POLY~ 
As described above, a defined number of Grainpatch 

instances is loaded into the Poly~ object; this is the most 
important section of the system and represents the real core 
of the algorithm (Fig. 5). Grainpatch has 8 inputs, one for 
the recording pointer (c) and 7 for the variables. 



  

 
Fig. 5. Grainpatch. 

 
Inputs are ordered as follows: 
1) Sync signal from the recording pointer (c).  
2) Start range value. 
3) Cartridge delay value. 
4) Metro triggers (bangs). 
5) Metro delay value. 
6) Grains length value. 
7) Amplitude value. 
8) Pitch-shifting ratio value. 

 

A. Starting point calculation 
This objects collection is arranged to calculate the 

effective starting point (Fig. 6). The data flow path is 
indicated below. 

- The delay time of Sync is calculated adding the start 
range value to the cartridge delay value, a = F + G 
(Fig. 3). 

- Sync is added to a random value in the range 0-F, d = a 
+ random value [0-F] (Fig. 3). 

- Modulo operators are applied to Sync to match the 
buffers length. 

 

B. Grain occurrences 
This objects collection is disposed to trigger the grain 

playing with a ramp function; the reproduction is done 
coupling the line~ object and the wave~ objects (Fig. 7-8). 
The data flow path is listed below.  

- Metro bang is delayed (r value, Fig. 4). 
- The delayed bang triggers the message when the line 

object is not working (bang from the right outlet of the 
line~ object). 

- Grains length value is triggered as above (bang from 
the right outlet of the line object). 

- The sprintf object sends the complete message to the 
line~ object. 

- The ramp function is generated by the line~ object and 
sent to the wave~ objects and operators (==~). 

 

 
Fig. 6. Start point calculation. 

 

C. Grain playing 
This objects collection is set to allow the grain playing 

(Fig. 8). As mentioned above, the system uses 2 parallel 
memory buffers (see § III) and, as a result, 2 parallel grain 
players. The data flow path is listed below.  

- The ramp function triggers the Sync values (red patch 
cords from the modulo operators) anytime it goes to 
zero. 

- The starting points are added to the grain lengths and 
sent to the corresponding wave~ object.  

 

 
 

Fig. 7. Grain occurrences. 



  

 
Fig. 8. Grain playing. 

 
- While the wave~ objects are playing, a selector driven 

by an operator (equal or greater then 15000) decides 
which wave~ object signal passes through it (see § III).   

- The selected signal is sent to the pitch-shifter module. 
 

D. Amplitude and pitch-shifting ratio interpolation  
This simply objects collection is arranged to interpolate 

the amplitude and the pitch-shifting ratio (Fig. 9). The data 
flow path is as follow.  

- The amplitude value is passed through a line~ object 
and interpolated in a time period of 200 ms (this is the 
only variable not synced with a zero value of the 
ramp).  

- The pitch-shifting ratio is synced with the ramp then 
passed through a line object and interpolated in a time 
period of 10 ms. 

- The pitch-shifting ratio is sent to the corresponding 
module. 

- The amplitude value is sent to a multiplier object. 
 

E. Amplitude scaling and pitch-shifting  
This final objects collection is set to apply pitch-shifting, 

windowing and amplitude scaling (Fig. 10). The data flow 
path is listed below.  

- The signal is passed through a frequency-domain 
pitch-shifter based on the gizmo~ object. 

- The pitch-shifted signal is multiplied by a synced 
window function. 

 
Fig. 9. Amplitude and pitch-shifting ratio interpolation. 

 
Fig. 10. Amplitude scaling and pitch-shifting. 

 
- The windowed signal amplitude is scaled. 
- The result is sent to the output where grains are added 

together by the poly~ object.  
 

VI. ALGORITHM PERFORMANCE 
The algorithm performance is strictly related to its overall 

variables setting (obviously to the audio scheduling settings 
too); in this way the most critical part of the system is 
represented by the real-time pitch-shifting process and its 
artifacts production [13]-[14]. For this reason, it is really 
important to set the pitch-shifter module variables (window 
size and overlap factor in particular) considering the grains 
length and the grains spectral content (Fig. 11).  

On the other hand, it would be impossible to obtain 
linearity in a system that uses processes that are non-linear 
by nature. Therefore, the open architecture of such a system, 
that allows the modification, replacement or removal of any 
part of the algorithm (a different pitch-shifting method for 
example), represents a considerable advantage over the use 
of pre-built systems, computationally efficient, but hard or 
impossible to edit. 

 

 
Fig. 11. Two 100 ms 1 KHz Sine wave grains. (1) Window size 

= 256 samples. (2) Window size = 128 samples. Overlap factor = 
8, for both. Note the difference in distortion on the first samples of 
each grain. 
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