

Abstract— Since Barry Truax’s early pioneering work, the

increasing availability of powerful and inexpensive desktop
computers has led many composers, researchers and artists to
experiment and work with granular synthesis and/or
granulation processes. During the last two decades a stream of
granulation software has appeared, but despite this spread, all
these applications have important limitations in terms of
efficiency, usability, flexibility and control. This paper
describes an abstraction of an efficient and flexible granular
processing system built into the Max/MSP environment.

Index Terms— Abstractions, Digital Sound Processing,
Max/MSP, Signal Processing.

I. INTRODUCTION
Although there are many sound granulation algorithms

that have spread widely since the early experiments of the
Canadian composer Barry Truax [1]-[2]-[3], it is not
possible to find a system that does not show at least one of
the following limitations (2-3 in most cases):

- closed architecture [4]-[5]-[7]-[9],
- with fee [5]-[7],
- no real-time support [6],
- pre-recorded samples only [7],
- implementation with a large use of externals [8],
- C or C++ programming skills needed for the algorithm

development [9]-[10].

The abstraction presented in this paper has the aim to

overcome all these limitations by implementing a real-time
granulation system into the Max/MSP environment [11].

I started the development from a basic algorithm that I
had previously implemented in Max/MSP and that I used in
my piece Krònos/Kairòs, for flute, harp and live electronics
(2010-11) [12].

The algorithm described in the abstraction has the
following features:

- from 1 to N voices - depending on the CPU,
- dynamic pitch transposition for each voice,
- dynamic amplitude for each voice,
- dynamic playback (portion of file) for each voice,
- dynamic phase for each voice.

II. OVERVIEW
At the highest level the system is organized into 3 main

Manuscript received January 8, 2015.

Fig. 1. System overview.

patches: Buffers patch, Data controls patch and Poly patch
(Fig. 1).

The first 2 patches generate the overall audio and control
signals, while the third is a set of multiple instances of the
Grainpatch (each instance processes only the data addressed
to it). The number of instances depends on the number of
grains - or voices - you want to generate and it is clearly
proportional to the computing power of the processor.

III. BUFFERS PATCH
The Buffers patch is the algorithm section where the

processes of loop recording and window function generation
take place; in other words, it is the patch where the audio
data are stored into the memory buffers.

A. Loop recording
In order to enable loop recording and audio data playback

from any points of the buffer, the system has been based on
the use of two parallels recorders. These recorders are
identical in size (30000 ms), but they have an offset of half
of their length between their recording points (recording
heads, Fig. 2).

Fig. 2. Buffers patch.

Abstraction of a real-time granulation system
built into the Max/MSP environment

Stefano Alessandretti

Fig. 3. Audio files variables. (a) minimum starting point. (b)

maximum starting point or playback pointer. (c) recording pointer.
(d) effective starting point after randomization. (e) effective ending
point. (F) starting range. (G) cartridge delay. (H) file portion
played.

This is a fundamental operation that allows the
reproduction of those grains that reside in the memory limit
of a buffer; a task not admitted by the Max/MSP players.
For example, it would be impossible to reproduce a grain of
100 ms with the starting location at 29980 ms and the
ending location at 80 ms of the first buffer, so you need to
access to it from the second buffer (delayed) where the
starting location is at 14980 ms while the ending location at
15080 ms.

B. Window function generation
The third memory buffer inside the patch is reserved to

the window function storage. You can generate the function
and store it into the buffer or simply recall a saved one from
the hard drive.

C. Data flow
The audio signal from the input is recorded into the

identical buffers (30000 ms), GRAINbuffer1 (in sync) and
GRAINbuffer2 (delayed by 15000 ms in location points); the
recording is in loop mode and the start is automated by the
DSP state.

The pointer (the clock of the recording head) of the first
recorder is passed through a gate - to allow the freezing -
and then addressed to the output.

IV. DATA CONTROLS PATCH
Inside the Data controls patch the variables are set with

faders, tables or preset numbers and then addressed to the
corresponding output and to each grain (voice) inside the
poly~ object.

There are 7 types of variables sent to each voice: start
range, cartridge delay, metro, metro delay, grains length,
amplitude and pitch-shifting ratio.

A. Start range
It is the range of the buffer memory where there are the

starting points of a voice, or in other words, the portion of
time where you put the random starting point of each grain
(Fig. 3). If you set it to zero, there is not randomization and
the effective starting point (d) matches with the playback
pointer (b); in this case there is only the cartridge delay (G)
between the recording pointer (c) and the playback pointer
(b).

Fig. 4 Time variables. (1… N) voice number. (pI… pN) metro

pulses. (r1… rn) metro delay for each voice. (QI… QN) period or
pattern length.

B. Cartridge delay
It is the delay time between the playback pointer (b) and

the recording pointer (d). It should be set according to the
input/output vector size, the signal vector size or to aesthetic
choices.

C. Metro
Like many other types of processing, granulation takes

effect if managed in time with the best rhythmic detail; for
this reason I have decided to organize grains as the
repetition of a musical pattern (Fig. 4). In this way, Metro
(p) is the trigger signal that represents the beginning of each
pattern and which occurs in each time period (Q).

D. Metro delay
It is the delay time (r) between the metro pulses (p) and

the starting point of a grain (d). For example, if you set the
metro delay to zero for any voice, the grains are played
simultaneously (homo-rhythmic grains).

E. Grains length
It is obviously the length of the grains, the only variable

shared by all voices; it could be from 1 ms to x, where x is
the buffer size minus the cartridge delay (G).

F. Amplitude
It is clearly the amplitude (in dB) of each grain.

G. Pitch-shifting ratio
It is the ratio of a grain pitch to its original pitch. For

example, an octave upper shifting is equivalent to a
pitch-shifting ratio of 2.

V. POLY~
As described above, a defined number of Grainpatch

instances is loaded into the Poly~ object; this is the most
important section of the system and represents the real core
of the algorithm (Fig. 5). Grainpatch has 8 inputs, one for
the recording pointer (c) and 7 for the variables.

Fig. 5. Grainpatch.

Inputs are ordered as follows:
1) Sync signal from the recording pointer (c).
2) Start range value.
3) Cartridge delay value.
4) Metro triggers (bangs).
5) Metro delay value.
6) Grains length value.
7) Amplitude value.
8) Pitch-shifting ratio value.

A. Starting point calculation
This objects collection is arranged to calculate the

effective starting point (Fig. 6). The data flow path is
indicated below.

- The delay time of Sync is calculated adding the start
range value to the cartridge delay value, a = F + G
(Fig. 3).

- Sync is added to a random value in the range 0-F, d = a
+ random value [0-F] (Fig. 3).

- Modulo operators are applied to Sync to match the
buffers length.

B. Grain occurrences
This objects collection is disposed to trigger the grain

playing with a ramp function; the reproduction is done
coupling the line~ object and the wave~ objects (Fig. 7-8).
The data flow path is listed below.

- Metro bang is delayed (r value, Fig. 4).
- The delayed bang triggers the message when the line

object is not working (bang from the right outlet of the
line~ object).

- Grains length value is triggered as above (bang from
the right outlet of the line object).

- The sprintf object sends the complete message to the
line~ object.

- The ramp function is generated by the line~ object and
sent to the wave~ objects and operators (==~).

Fig. 6. Start point calculation.

C. Grain playing
This objects collection is set to allow the grain playing

(Fig. 8). As mentioned above, the system uses 2 parallel
memory buffers (see § III) and, as a result, 2 parallel grain
players. The data flow path is listed below.

- The ramp function triggers the Sync values (red patch
cords from the modulo operators) anytime it goes to
zero.

- The starting points are added to the grain lengths and
sent to the corresponding wave~ object.

Fig. 7. Grain occurrences.

Fig. 8. Grain playing.

- While the wave~ objects are playing, a selector driven

by an operator (equal or greater then 15000) decides
which wave~ object signal passes through it (see § III).

- The selected signal is sent to the pitch-shifter module.

D. Amplitude and pitch-shifting ratio interpolation
This simply objects collection is arranged to interpolate

the amplitude and the pitch-shifting ratio (Fig. 9). The data
flow path is as follow.

- The amplitude value is passed through a line~ object
and interpolated in a time period of 200 ms (this is the
only variable not synced with a zero value of the
ramp).

- The pitch-shifting ratio is synced with the ramp then
passed through a line object and interpolated in a time
period of 10 ms.

- The pitch-shifting ratio is sent to the corresponding
module.

- The amplitude value is sent to a multiplier object.

E. Amplitude scaling and pitch-shifting
This final objects collection is set to apply pitch-shifting,

windowing and amplitude scaling (Fig. 10). The data flow
path is listed below.

- The signal is passed through a frequency-domain
pitch-shifter based on the gizmo~ object.

- The pitch-shifted signal is multiplied by a synced
window function.

Fig. 9. Amplitude and pitch-shifting ratio interpolation.

Fig. 10. Amplitude scaling and pitch-shifting.

- The windowed signal amplitude is scaled.
- The result is sent to the output where grains are added

together by the poly~ object.

VI. ALGORITHM PERFORMANCE
The algorithm performance is strictly related to its overall

variables setting (obviously to the audio scheduling settings
too); in this way the most critical part of the system is
represented by the real-time pitch-shifting process and its
artifacts production [13]-[14]. For this reason, it is really
important to set the pitch-shifter module variables (window
size and overlap factor in particular) considering the grains
length and the grains spectral content (Fig. 11).

On the other hand, it would be impossible to obtain
linearity in a system that uses processes that are non-linear
by nature. Therefore, the open architecture of such a system,
that allows the modification, replacement or removal of any
part of the algorithm (a different pitch-shifting method for
example), represents a considerable advantage over the use
of pre-built systems, computationally efficient, but hard or
impossible to edit.

Fig. 11. Two 100 ms 1 KHz Sine wave grains. (1) Window size

= 256 samples. (2) Window size = 128 samples. Overlap factor =
8, for both. Note the difference in distortion on the first samples of
each grain.

REFERENCES
[1] B. Truax, “Real-time granular synthesis with the DMX-1000,”

Proceedings of the 1986 International Computer Music Conference,
Paul Berg, San Francisco, pp. 231-35, 1986.

[2] B. Truax, “Real time Granulation of sampled sound with the
DMX-1000,” Proceedings of the 1987 International Computer Music
Conference, James Beauchamp, San Francisco, pp. 138-145, 1987.

[3] B. Truax, “Composing with Real-Time Granular Sound,” Perspectives
of New Music, vol. 28, no. 2, pp. 120-134, 1990.

[4] D. Trueman, “Munger~, external for Max/MSP,” cited 2014,
available from http://www.music.columbia.edu/PeRColate/.

[5] SAMPLESUMO, “Saltygrain,” cited 2014, available from
https://www.samplesumo.com/product/saltygrain.

[6] S. Nobayasu, “Granular Synthesis v. 2.5,” cited 2014, available from
http://formantbros.jp/sako/download.html.

[7] UI SOFTWARE, “Methasynth v.5.4,” cited 2014, available from
http://www.uisoftware.com/MetaSynth/index.php.

[8] N. Wolek, “Granular Toolkit v1.0 for Cycling74's Max/MSP,”
Journal SEAMUS, vol. 16, no. 2, pp.34-46, 2002.

[9] I. I. Bukvic, J.-S. Kim, D. Trueman and T. Grill, “munger1~: towards
a cross-platform swissarmy knife of real-time granular synthesis,”
Procedings of the 2007 International Computer Music Conference,
Paul Berg, San Francisco, pp. 349-354, 2007.

[10] Grill, T. "flext - C++ layer for cross-platform development of
Max/MSP and pd externals", Cited 2007; Available from
http://grrrr.org/ext/flext/.

[11] Cycling ’74. “Max/MSP: A graphical programming environment for
music, audio, and multimedia”, Cited 2014; Available from
http://www.cycling74.com/products/maxmsp.

[12] S. Alessandretti, “Krònos/Kairòs, per flauto, arpa e live electronics,“
ARS Publica, Pistoia, 2011.

[13] C. Roads, “The Computer Music Tutorial,” MIT Press, Cambridge,
pp. 440-448, 1996.

[14] U. Zölzer, “DAFX - Digital Audio Effects, John Wiley & Sons,
Chichester, pp. 237-297, 2002.

Stefano Alessandretti was born in Assisi (Italy) in 1980
and studied at the Florence Conservatory of Music and at
the Venice Conservatory of Music, getting degrees in
computer music (2008), sound direction and live
electronics (2011) and composition and new technologies
(2014). He was selected to attend workshop by: S.
Sciarrino (2009), IRCAM (2011) and IanniX (2012).

 He is a composer, an electronic musician and an
independent researcher; in 2011 he taught live electronics at the Giorgio
Cini Foundation in Venice and from 2012 to 2013 music technologies at the
Padua Music Lyceum. His fields of interest are related to music computing,
live electronics and electroacoustic composition.

Prof. Alessandretti is member of Arazzi Laptop Ensemble and artistic
director of SON Ensemble. He received commissions from the Music
Biennial of Venice, Fenice Philharmonic Orchestra, Giorgio Cini
Foundation and Venice Conservatory of Music. His scores are published by
ARS Publica and Fenice Theatre Foundation.

