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Abstract. This paper presents a method of unsupervised learning of harmonic 
analysis based on a hidden semi-Markov model (HSMM). We introduce the 
chord quality templates, which specify the probability of pitch class emissions 
given a root note and a chord quality. Other probability distributions that 
comprise the HSMM are automatically learned via unsupervised learning, which 
has been a challenge in existing research. The results of the harmonic analysis of 
the proposed model were evaluated using existing labeled data. While our 
proposed method has yet to perform as well as existing models that used 
supervised learning and complex rule design, it has the advantage of not requiring 
expensive labeled data or rule elaboration. Furthermore, we also show how to 
recognize the tonic without prior knowledge, based on the transition probabilities 
of the Markov model.  

Keywords. Automatic chord recognition, Harmonic analysis, Hidden Semi-
Markov Models, Neural network.  

1 Introduction 

Harmonic analysis is the process of representing a musical piece as a sequence of chord 
labels, which facilitates understanding the structure of the piece. In tonal music, the 
chord label is called chord degree. The chord degree represents chords with a position 
(denoted by a Roman numeral) on the scale of a local key. This approach to labeling 
chords in the context of the key is based on the idea that chord progressions play a 
crucial role in establishing a tonality, which is fundamental in tonal music.   Therefore, 
harmonic analysis can be applied to various tasks such as composition [6, 28] and 
higher-level music analysis [5, 20]. 
Several studies have explored automated harmonic analysis [1, 2, 12, 14, 15, 19, 22-
26, 31]. Among them, unsupervised learning is advantageous as it does not require 
expensive labeled data. However, there have been few works on unsupervised 
harmonic analysis [19, 31]. The challenge with harmonic analysis is that it involves 
simultaneously identifying both keys and chords. Since many possible combinations 
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exist, obtaining an optimal result through unsupervised learning is challenging. 
Therefore, in order to make the unsupervised learning tractable, previous studies relied 
on manually designed model parameters [19, 31]. In this sense, the models were not 
fully unsupervised. 
This study presents a new method for unsupervised harmonic analysis1. The proposed 
model is based on a hidden semi-Markov model. Most model parameters can be learned 
automatically using non-labeled data, which is a departure from the previous 
approaches.  As an exception, code quality templates are set manually. The chord 
quality templates correspond to chord labels in supervised learning, which allow 
comparison with existing harmonic analysis. We construct the semi-Markov model 
with the technique of deep latent variable models [9]. The technique is to employ neural 
networks to approximate probability distributions that comprise a targeted latent 
variable model, which helps unsupervised learning. 
Although the experimental results show that our model still has room to be improved, 
we exemplify the potential of our model with automatic evaluations and discussions on 
the obtained harmonic analysis. We also discuss how transition probabilities of the 
model obtained by unsupervised learning can find the tonic without prior knowledge. 
This paper is organized as follows. In Section 2, we review related studies. We 
introduce the proposed model in Section 3. We describe experimental setups and results 
in Section 4. Then, we summarize our contributions in Section 5. 

2 Related Work 

2.1 Automated harmonic analyses  

2.1.1 Rule-based harmonic analysis 
The Melisma Music Analyzer is one of the leading harmonic analysis models, 
comprising the Meter, Grouper, Streamer, Harmony, and Key programs [22-26]. Since 
the chord labels (Roman numerals) in harmonic analysis identify chords within the 
context of keys, they require information about both keys and chords. The pipeline 
analyses using Meter, Harmony, and Key programs can provide Roman numerals. The 
system is rule-based, and utilizes musical knowledge to determine chord tones. 
Additionally, it provides various criteria for dealing with ambiguous events, for 
example, preferring chord changes on strong beats and root progression on the line of 
fifth (circle of fifth) [24]. However, writing down all the preference rules and their 

 
1  https://github.com/yui-u/harmonic-analysis-chorales 
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priorities to deal with this ambiguity takes much work. This could pose a challenge 
when expanding the system to cover different types of music. 

2.1.2 Harmonic analyses with supervised learning 
On the other hand, supervised learning relies on high-quality labeled data to learn chord 
discriminators automatically. Masada and Bunescu employed a semi-Markov 
Conditional Random Field (semi-CRF) for supervised harmonic analysis [12]. In 
Conditional Random Fields (CRFs), feature functions act like preference rules. In 
addition, priorities (weights) for each feature function are automatically learned with 
the labeled data. 
Furthermore, Chen and Su developed a harmonic analyzer called the Harmony 
Transformer that used a Transformer encoder-decoder as an input feature extractor [1, 
2]. More recently, Micchi et al. proposed a model with a Convolutional Recurrent 
Neural Network (CRNN) encoder and Neural Autoregressive Distribution Estimator 
(NADE) that outperformed the Harmony Transformer [14, 15]. However, even with 
recent neural network-based supervised learning, the performance of harmonic analysis 
still has room to be improved. In addition, the dataset is biased toward piano pieces in 
the classical era and vocal pieces with relatively clear harmony. 

2.1.3 Unsupervised harmonic analysis 
Increasing the amount of training data is a way to improve performance in supervised 
learning. However, preparing the data can be expensive. Alternatively, unsupervised 
learning does not require labeled training data. However, there have been few works 
on unsupervised harmonic analysis [19, 31]. The challenge with harmonic analysis is 
that it involves simultaneously identifying both keys (determined by the combination 
of modes and tonics) and chords. Since many possible combinations exist, obtaining an 
optimal result through unsupervised learning is challenging. Consequently, past studies 
had to rely on manually set model parameters [19, 31]. For instance, Wang and 
Wechsler proposed using an Infinite Gaussian Mixture Model (IGMM) for harmonic 
analysis [31]. In this model, keys and chords were considered as hidden variables. Since 
IGMM is a type of Bayesian model, optimal keys and chords for targeted musical notes 
are obtained through the sampling process. One limitation of their model was that the 
model parameters were given manually based on musical knowledge. For example, 
they provided the Gaussian mean and covariance for the major and minor scales, which 
worked like key profiles. In addition, the IGMM could not consider chord transitions 
since it was a note clustering. 
Raphael and Stoddard also proposed an unsupervised harmonic analysis approach 
based on Hidden Markov Models (HMMs) [19]. The HMM had the advantage of being 
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able to account for chord transitions. However, according to Raphael and Stoddard, 
while the chord degree transition probability was learnable, the key transition 
probability and the probability of the chord degree after a modulation were difficult to 
learn [19]. This difficulty is probable because the chord degrees appear relatively 
evenly, whereas keys and modulations strongly depend on individual pieces. 

2.2 Deep latent variable models 

Deep latent variable models are methods in which deep neural networks work as the 
approximators of the probability distributions that make up the latent variable models 
[9, 13, 27]. In recent years, deep latent variable models have attracted attention as a 
new method for improving unsupervised learning. For example, Tran et al. proposed 
unsupervised neural Hidden Markov Models for the part-of-speech tag induction [27], 
and Miao et al. introduced neural topic models [13].  
In the music field, Uehara and Tojo extended the unsupervised neural HMMs to semi-
Markov models (HSMMs) and performed recognition of chord segments and their 
transitions [30]. However, their model was not able to recognize keys and chords 
simultaneously, and thus could not perform harmonic analysis. Our model is based on 
Uehara's Neural HSMMs but with significant changes for harmonic analysis, including 
output emission probability with chord quality templates, simultaneous recognition of 
keys and roots, and dynamic modulation detection. 

3 Methodology 

The proposed model for harmonic analysis requires no labeled data for parameter training. 
In this sense, we describe the model as "unsupervised," which is a significant step 
forward, given that conventional models require all or part of the model parameters to be 
designed manually [19, 31]. However, our model incorporates simplifications proposed 
in previous methods, such as the assumption of transpositional equivalency, a predefined 
set of chord qualities, and simplified conditional probabilities of the stochastic model. 
The hidden semi-Markov model [32] forms the core of the proposed model. Unlike 
Markov models, semi-Markov models equip a notion of the duration of a state, thus more 
suitable for segment-level recognition. This property of the HSMM is advantageous since 
chords are recognized as a result of score segmentation [12]. Among several variants of 
the hidden semi-Markov model, we utilize the "Residential-time HMM" [33] that 
assumes independence between the duration of the current and the previous hidden states. 
The EM algorithm is a widely known method for learning the parameters of an HSMM 
[32, 33]. However, it has been reported that Neural HSMM, a type of deep latent variable 
model, could achieve better marginal likelihood than the EM algorithm [29]. As described 
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in Section 2, the deep latent variable model predicts model parameters through neural 
networks [9]. In the following sections, we will first overview the proposed HSMM for 
harmonic analysis. Then, the neural networks that approximate probability distributions 
that constitute HSMM are described. Table I shows the notations that will be used in the 
rest of this paper. 

TABLE I. NOTATIONS. 

 Output sequence length  
 Time step  
 An observation at   
 Pitch class2  
 Mode index  

 Root pitch class index3,4  

 Root pitch class indices that distinguish before/after transition.  
 Shift value.  specifies a key .  
 Key index  
 Chord quality index  
 Hidden state duration index  

 The number of indices   
 Logit5 for the probability of   
 Vector of logits for the probability of   
 Index vector with the 1 of N representation6  
 The -th component of the 1 of N index vector.  
 Mode embedding  

3.1 The hidden semi-Markov model for harmonic analysis 

The proposed model is based on a hidden semi-Markov model comprising initial 
hidden-state, hidden-state transition, hidden-state duration, and output emission 
distributions [30, 32, 33]. The output for the model is a sequence of pitch classes 
represented in binary twelve-dimension vectors. Since the hidden states are not 

 
2  The pitch classes are the 12 numbered notes in an octave: {C, C#/Db, D, ..., B} are numbered 

{0, 1, 2, ..., 11} respectively. 
3  In our design, the root pitch class represented by the index r indicates the root note of the chord, 

independent of the key. 
4  The last 13th dimension is used as the Rest state. 
5  In this paper, we use the term logit as a value that is derived from a neural network and 

parameterize a probability. The logit is fed into the sigmoid or softmax function to produce the 
parameter of a targeted probability distribution. 

6  The 1 of N representation is an N-dimensional vector representation of a category index. For 
example, for chord quality index q = 3, the corresponding vector of 1 of N representation is {0, 
0, 0, 1, 0, 0, 0}. 
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observed and no labeled data is used, what the hidden states represent is not specified. 
However, simplifications of the model, described later in this paper, make the hidden 
states correspond to combinations of keys and root pitch classes. 
Fig. 1 shows an example of possible paths of hidden states. Note that the numbers of 
keys, root pitch classes, and the maximum duration are less than the actual settings for 
ease of reading the figure. At each time step, the hidden states are represented by a 
combination of a key and a root pitch class. In addition, possible remaining times of 
the hidden states are combined with each hidden state. Then, triplets of (key, root, 
duration) represent all possible states. Key or root transitions are only permitted when 
the remaining duration time is zero in a semi-Markov model. Otherwise, the remaining 
duration times decrease by one at each time step. Note that the Residential-time HMM, 
a variant of HSMMs, assumes a hidden state transition is independent of the duration 
(residential-time) of the previous hidden state [32, 33]. Thus, the hidden state transition 
is represented as follows. 

 
(1) 

Note that transition probabilities do not include self-transitions, as illustrated in Fig. 1. 
In addition, we simplify the hidden-state transition probability  
as follows. 

 
(2) 

In the rest of the paper, we call  as the key transition probability,  as 
the initial root probability,  as the root transition probability, and  as 
the duration probability. 
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Fig. 1. An example of possible paths of hidden states where the number of keys 
is 2, the number of roots is 2, and the maximum duration is 3. For simplicity, the 
number of keys, roots, and the maximum duration are less than the actual 
settings. Thin solid lines represent root transitions, dotted lines represent key 
transitions (modulations), and bold solid lines represent the consumption of the 
remaining duration times. 

     
Since there is no previous hidden state when t = 0, the probability of the first hidden 
state is computed as follows. 

 (3) 

The distribution for  is the same as , and  is the same as . 
 is the initial key probability. 

At each time step, the output  depends only on the hidden state at the same time step. 
We decompose the emission probability  into a chord quality probability 
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 and the pitch class emission probability , where  denotes a 
chord quality. 

 
(4) 

Among all the probability distributions in the proposed HSMM, we only set manually
, which we call chord quality templates7. The details of the chord quality 

templates are described in 3.1.1. 
With the initial (3) and transition (1)(2) probability of the hidden states and the emission 
probability of the observations (4) described above, the generative process of the 
HSMM is represented as follows, where L is the sequence length. 

 

(5) 

3.1.1 Emission distribution with chord quality templates 

In this section, we first describe the details of the calculation of output emission 
distribution. As described above, we decompose the output emission probability into 
the chord quality and pitch class emission probability. We use seven chord qualities: 
{major triad, minor triad, diminish triad, dominant seventh, major seventh, minor 
seventh, and diminish seventh}. Then, we formulate the probability of pitch class 
emission given the chord quality and the root as follows. 

 

(6) 
 

(7) 

  represents the value at the pitch class (pc) of an output binary vector . For 
example, if , the values of , , and  are 1, 
and the remaining are 0. 

 
 
 

 
7  More precisely, in addition to this, the maximum inter-key transition probability limit is set 

manually. 
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TABLE II. SETTINGS OF CHORD QUALITY TEMPLATES. 

 
 
We set the logit  manually, which we call chord quality templates, equivalent to 
setting chord labels in supervised learning. In particular, we set the quality template for 
the case root pitch class of 0, as in Table II.  when marked by one(1) in 
Table II, and  otherwise. The weight  is set to 5.0. As described in Table 
I, we use a bold symbol to represent a vector of logits, for example, 

 (8) 

If the root pitch class is not 0, the chord templates for a specific root pitch class are 
obtained simply by shifting the code templates in Table II. For example, when the root 
pitch class is 5, the chord template of minor seventh  

, where 
, ,  and  are  and the 

remaining are . 
On the other hand, the probability of chord quality given a key and a root pitch class is 
calculated via neural networks as follows8. 

 

(9) 
(10) 
(11) 

Here,  is a set of chord templates , represented with a 
tensor. Equation (11) represents the operation of expanding the dimension of mode 
embedding by a trainable linear transformation to the number of modes times the 
number of roots, then, eq. (10) represents extracting the components corresponding to 
the targeted root. The computation of the mode embeddings  will be explained in 
the following paragraph. 

 
8   
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Since the probability  is independent on the time step t, the subscript t is 
omitted in (9). Hereafter, we sometimes omit the subscript t when the variable is time-
independent. Note that the chord quality probability is conditioned on the mode m and 
root r instead of key k and root r. In this paper, we set the number of modes to two. 
However, the two modes are not restricted to major and minor modes but are 
automatically learned by unsupervised learning. 

 (12) 

The  in equation (11) is the mode embedding, which works as a latent feature 
vector of a mode. This  can be a learnable vector but is generated through a Recurrent 
Neural Network (RNN) in this study, as shown in (12). In particular, we utilize the 
Long-Short Term Memory [7] as an RNN. In this way, any number of mode 
embeddings can be generated with the same RNN. In this study, the number of modes 
is fixed to two, so there is no direct advantage to using an RNN, but this setting is 
advantageous if the number of modes is larger in the future (e.g., considering church 
modes) or if it is difficult to fix the number of modes in advance. 
Once  is calculated,  is obtained by shifting , where we 
assume transpositional equivalence in keys. For example, a key with (mode index = 1, 
shift = 3) is assumed to represent a key, each pitch class of which is shifted by three 
from (mode index = 1, shift = 0). We let the symbol m denote the shift(s) = 0 case,  
and let k denote , , ..., 

, , , ..., 
. Note that we do not restrict the tonic pitch class of a mode 

as r = 0. We will describe how we get the tonic pitch class later. The shift of 
 is done without the tonic information. For example, when 

. 
As we have seen, the parameters in equations (11) and (12) are learnable and are 
utilized to generate the chord quality distribution. Thus, the neural networks generate 
the distributions that make up the model, which is a characteristic feature of the deep 
latent variable model [9]. The mode embedding  is also used to calculate the initial 
hidden state and the hidden state transition probabilities described below. The results 
of previous studies suggest that using such features and network elaborations can lead 
to better convergence than conventional methods [13, 27, 30]. 

3.1.2 Hidden state transition distribution 

A hidden state is represented in a combination of key, root pitch class, and remaining 
duration. As shown in equations (1) and (2), the hidden state transition probability is 
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decomposed in the duration probability , root transition probability , 
and key transition probability . 
In this work, we assume  is independent of keys and roots since coherent chord 
length would be preferred. Therefore, the logit for  is a simple learnable vector, the 
dimension size of which is the maximum duration length. Thus, the duration 
distribution is obtained as follows, where  is the learnable vector. 

 

(13) 
 

(14) 

For the root transition probability , we first compute 
 as follows, then shift them under the assumption of 

transpositional equivalency. 

 

(15) 
 

(16) 
 

(17) 
 

(18) 
The equation (18) computes a marginal emission pitch class logit of the root pitch class 

r. The marginal emission pitch class logit  is used as a feature of a chord 
whose root is r given the mode m. We consider the last root index (r = 12) as Rest and 
set  for it to a 12-dimensional vector with each dimension's value as . Then, 
equation (17) computes a root-transition logit  where  denotes a vector 
concatenation.  The root transition probability  is then computed by the 
softmax on the set of logits . 
Once  is computed,  is obtained by shifting , 
similar to the above discussion of the chord quality probability case. For example, when 
k = 14, which means (m = 1, s = 2), a component of the probability 

 equals . 
We use the same emission distribution, duration distribution, and root transition 
distribution for all observed data. On the other hand, the key distributions described 
hereafter can take different values for each observation sequence. Changing the 
probability distribution of the model depending on the observation is not possible with 
a conventional HSMM, but is possible with deep latent variable models [9, 13, 27, 30]. 
We first obtain the embedding of an observed sequence to compute the key transition 
distribution.  
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(19) 
 

(20) 
 

(21) 
 

(22) 

The observed data at each time step  s first embedded by an LSTM, as eq. (19). Next, 
the weight for each latent feature  is calculated by (20) and (21), where the 
scalar value  is an additional information of the time step. Then, the 
embedding of the observed sequence is obtained by the weighted summation of the 
latent features, as shown in (22). Using the resulting , we compute the mode 
probability as follows. 

 

(23) 
 

(24) 

Here,  is a set of mode embeddings , represented with a tensor. 
As described in Section 3.1.1, a key is defined by specifying a combination of mode 
index m and shift value s. The distribution of modes is obtained by (24), and the shift 
value is obtained as follows. 

 

(25) 
 

(26) 

Then, the following equation gives the key probability. 

 (27) 

Note that the key probability  is not conditioned on the previous key; therefore, it 
is used as the initial key probability. There are two situations where the initial key 
probability is used, one at the beginning of the sequence and the other immediately 
after the modulation. Although the transition probabilities between keys should be 
considered, the number of parameters to be estimated was reduced by computing  
instead of , as the proportions are more important than the transitions for the 
keys. The key transition probability is simplified as follows. 
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 (28) 

 is a learnable value. However, we set the upper limit of  to 0.01, which means the 
model penalizes modulations.  is the key probability modified so that . 
At the beginning of the sequence, the key probability  is combined with the initial 
root probability given a key in the following equation. Here, again, we first compute 
the initial root probability given a mode , and the initial root probability given a 
key is obtained automatically by shifting . 

 

(29) 
 

(30) 
(31) 

In the above equation,  is the mode embedding, and  is the marginal emission 
pitch class logit, the same as those used in (18) and (17). The Multi-Layer Perceptron 
(MLP) with one hidden layer maps the concatenated vector of  to a scalar 
logit . The initial probability given a mode  is then computed by applying 
the softmax function to the set of logits . The initial root 
probability given a key  can be automatically computed by shifting the . 
Finally, we can obtain the initial probability by . 

3.2 Training 

As a deep latent variable model, the proposed model is trained by optimizing the 
network parameters that produce the probability distributions of the HSMM. The loss 
function here is the negative log-likelihood (NLL) of the observed sequence 

9 , obtained by marginalizing all possible paths of hidden 
states. The technique to marginalize all possible paths of hidden states for an H(S)MM 
is known as the forward algorithm [17, 32]. The details of the forward algorithm for 
the HSMM, especially for the Residential-time HMM, can be found in [33] and [30]. 
In the proposed model, a hidden state is represented in a combination of key and root, 
as illustrated in Fig. 1. Then, the model can directly apply the forward algorithm for 
the Residential-time HMM, described in [30]. 
We perform unsupervised training in two phases. The proposed model is not given a 
feature of keys like the Key Profile [11]. Therefore, in the first phase, we train the score 

 
9 More precisely, the loss is the average of the NLL of all the sequences in the mini-batch. 
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without key signatures to obtain features of two modes. After that, additional training 
is performed using the original key signature. 
Phase 1:  

Training with the normalized data. Normalized means transposing a score to a 
key without a key signature. If the key signature information has been lost, the 
score is transposed to maximize the percentage of pitch classes {0, 2, 4, 5, 7, 9, 
11}. In Phase 1 training, keys are limited to the two modes only. These two modes 
are not necessarily limited to C major and A minor keys, but are learned under 
the condition that the shift value is always 0. In addition, modulation is disabled 
by setting the maximum inter-key transition probability limit to zero. 

Phase 2:  
Training with the original (not transposed) data. In the Phase 2 training, the shift 
values and the inter-key transition are enabled. Phase 2 training is performed as 
additional training using the result of Phase 1 as the initial value. 

3.3 Inference (harmonic analysis) 

After the training, the proposed model performs harmonic analysis by finding the most 
likely sequence of hidden states (combinations of keys and roots) and their residential 
times from an observed sequence. Thus, the harmonic analysis is the inference problem 
of an HSMM, and the method for it is well known as the Viterbi algorithm [4, 17, 32].  
After the hidden state inference, the most likely chord quality ( ) for each timestep is 
obtained by taking the argmax of the probability of output emission given a key and a 
root. 

 (32) 

Thus, we obtain the sequence of keys, root pitch classes, and qualities. Both chord name 
analysis and Roman numeral analysis are possible based on them. In particular, a chord 
name is derived from the information of a root pitch class10 and a quality. The Roman 
numeral is derived from a key, root, and quality. 
To obtain the chord degree (Roman numeral), we first convert the root pitch class by 
(r - s) mod 12. Here, s is the shift value that is combined with mode m to specify a key 
(k = (m, s)). Although our model does not explicitly know the diatonic scale, the 
transition probabilities of the learned model indicate that the chords with 0 and 7 as the 
roots are the most dominant. This result will be discussed later, but based on this 
observation, the correspondence between pitch class and degree is given in Table III. 
Here, the pitch classes corresponding to I and V are 0 and 7, respectively, and the rest 

 
10 → footnote 3 
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are assigned one degree per two successive roots. After the conversion, the degree is 
denoted in uppercase if the predicted quality is major; otherwise, it is denoted in 
lowercase. 

TABLE III. CONVERSION TABLE OF SHIFTED ROOT PITCH CLASSES TO DEGREES. 

 

Our model does not predict the chord inversion. However, we determine chord 
inversions in Table IV, where the blank components are assumed to be the basic chords. 

TABLE IV. CONVERSION TABLE FOR DETERMINING CHORD INVERSIONS.  

 

4 Experiments  

4.1 Datasets 
We used two different sets of J.S. Bach's four-part chorales: a dataset of 60 chorales 
formatted by Radicioni and Esposito, and a set of 371 chorales in MusicXML format 
from the Music21 Library. In this paper, we denote the former dataset as 
"JSBChorales60" and the latter as "JSBChorales371". 
Radicioni and Esposito provided preprocessed scores and human-annotated chord 
labels in the JSBChorales60 dataset11 [18]. The preprocessed scores include pitch 
classes, bass pitch classes, and metrical accents computed by the Meter program of the 
Melisma Analyzer [25]. However, the preprocessing lost some information in the 
original scores, for example, beat positions, key signatures, time signatures, and parts 
(except bass pitch classes). The dataset contains 60 chorales in total. 
On the other hand, The JSBChorales371 dataset from the Music21 Library [3] is a set 
of scores in MusicXML format, and it retains all information as a score. In addition, 
the dataset contains 371 chorales, some of which are not included in the JSBChorales60 
dataset. One of the reasons the JSBChorales371 dataset has not been used much is that 
it is just a collection of scores and does not provide labeled data. Since our model is 
unsupervised, we can utilize the JSBChorales371 dataset. For evaluation, we consult 

 
11 https://archive.ics.uci.edu/dataset/298/bach+choral+harmony 
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the human analysis of 20 pieces publicly available in the Music21 Library12 [3]. We 
used fixed train, validation, and test splits for the JSBChorales371 dataset. The testing 
data is the set of 20 pieces where the human annotations are available. We preprocess 
the MusicXML scores into sequences of pitch classes. The length of each event of pitch 
classes is 16th-note width, which is the minimum duration of the dataset (except for 
very few exceptions). 

4.2 Experimental setups 

For the JSBChorales60 dataset, we followed the original 10-fold cross-validation splits 
provided by Masada and Bunescu. However, unlike the previous work, we used one 
fold for testing, another for development, and the remaining 8-folds for training. The 
random seed was fixed to 123. To train the proposed model, we only used the 
preprocessed pitch classes. The minibatch size was 2. Since only the annotation of 
chord names is provided, we performed chord name analysis for the JSBChorales60 
dataset. In addition, the chord root names in the annotation were converted to pitch 
classes before the evaluation since our model did not distinguish enharmonic notes. 
However, we do not consider this a serious limitation since enharmonic distinctions are 
possible if the original score information has not been lost in preprocessing. 
For the JSBChorales371 dataset, we used fixed train, validation, and test splits for the 
JSBChorales dataset. The testing data was the set of 20 pieces where the human 
annotations were available. However, three pieces were excluded because of the 
collapsed format or inconsistency of key signatures between the annotation and the 
original score. Thus, the resulting number of testing data was 17. In addition, we used 
62 pieces randomly selected as the development data and the remaining 243 pieces for 
training. The total number of pieces used was 322, where 49 pieces were excluded 
because of the collapsed format or duplication. In both training and testing, we 
separated a piece into segments by the fermata13 positions and treated the segments as 
independent sequences. We trained with three random seeds: 123, 456, and 789. The 
minibatch size was 8. 
Other settings were the same between JSBChorales60 and JSBChorales371. The 
number of training epochs was 480 for phase 1 and 240 for phase 2. The best model 
was chosen by the negative log-likelihood on the development data. The training was 
stopped prematurely if the best model was not updated in 80 consecutive epochs. The 
optimizer was Adam [10], and the learning rate was 1e-3. 

 
12 https://github.com/cuthbertLab/music21/tree/master/music21/corpus/bach/choraleAnalyses 
13 A fermata represents a full-stop marker in a lyric in chorales. 



ICNMC 2024 

 
 
 
 

47 

4.3 Automatic evaluation results of harmonic analysis 
TABLE V. EVALUATION RESULTS OF ACCURACY ON JSBCHORALES60. 

model method Full Chord Root Chord 
HMPerceptron [18] supervised 80.1 - 
HMPerceptron (re-experimented [12]) supervised 77.2 84.8 
Semi-CRF [12] supervised 83.2 88.9 
Melisma [25] (reported by [12]) rule-based - 84.3 
Ours unsupervised 66.8 79.2 

 
The Accuracy14 of our model on the JSBChorales60 dataset is shown in Table V. Note 
that the proposed model did not consider enharmonic notes. Therefore, we converted 
the root names to pitch classes when evaluating our model. In this sense, the evaluation 
is not under exactly the same conditions as the other models in the table. However, as 
mentioned earlier, we do not consider the enharmonic issue a limitation since it can be 
resolved if the information in the original score remains. 
Table V shows that our model underperformed compared to supervised learning and 
sophisticated rule-based models. However, we have contributed to the advancement of 
harmonic analysis with unsupervised learning by enabling unsupervised learning of 
model parameters and presenting evaluation scores to demonstrate the current 
performance of unsupervised learning. 
 

TABLE VI. EVALUATION RESULTS OF ACCURACY ON JSBCHORALES371. 

model Key Full RN Root RN 
Ours 74.2 61.6 66.9 

 
As mentioned in Section 4.2, we evaluated chord names on JSBChorales60, whereas 
we can evaluate harmonic analysis using Roman numerals (RNs) on JSBChorale371. 
Analysis with Roman numerals requires simultaneous recognition of the keys and 
roots; therefore, it is more complex than recognizing chord symbols. The Accuracy 
scores for JSBChorales371 with our model are shown in Table VI15. To the best of our 
knowledge, this is the first report comparing the manual and unsupervised harmonic 
analyses attached to the Riemenschneider numbers 1-20 of J. S. Bach's chorales16. 

 
14 Accuracy is the percentage of correctly predicted labels from the total number of events in the 

dataset. 
15 The human annotation sometimes gives multiple interpretations of a single chord at the start 

or end of modulation, but in this evaluation, the last label was used. 
16 → footnote 12 
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However, our model still has challenges, as seen in the scores obtained. In the next 
section, we will discuss these issues by presenting the results of the analysis. 

4.4 Discussion on examples of the obtained analyses 
Fig. 2 shows the harmonic analyses of BWV269, bars 13-20. The labels are displayed 
below the bass notes, if present, or at the places where the note exists, in preference of 
lower parts. A typical error in our model, exemplified by dotted circles in Fig. 2, is the 
extra annotation of passing tones. As shown in Fig. 2, the gold annotation distinguished 
V6-V6/5 (bar 18) and V-V7 (bar 19), while it did not distinguish vi-vi2 (bar 20), unlike 
our model's prediction. The difference between the V and vi cases may be suggested 
by whether they were on the Bass passing note or not; however, these differences were 
difficult to detect in our model, which is based on statistical unsupervised learning. 
Another issue with our model is that it does not support borrowed chords; therefore, as 
shown by the dotted square (bars 15 and 16) in Fig. 2, borrowed chords are sometimes 
detected as modulations. 

 
Fig. 2. Harmonic analysis of BWV269 (Riemenschneider No.1), bars 13 - 20. 
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Fig. 3. Harmonic analysis of BWV40.8 (Riemenschneider No.8), bars 7 - 10. 

 
The process of identifying keys is more complex than commonly thought. Fig. 3 shows 
an example. As shown by dotted circles, both gold and predicted analyses detect a 
modulation at bar 8. However, a consistent four-degree ascending root progression (F 
→ Bb → Eb → Ab → Db) can be observed in bars 7-9. Therefore, it is possible to 
interpret the progression as (V → i → IV → VII → III) without any modulation. 

4.5 Tonality derived from the learned root-transition probabilities 
As noted earlier, we did not assume that the two modes we set were major and minor, 
nor did any assumption to tonic notes. Many works have considered that the pitch class 
with the highest percentage of notes is the tonic [8, 11, 23, 31]. We argue, however, 
that the tonic should be recognized in the context of harmonic progressions. In 
particular, we consider that tonic is the largest component of the stationary distribution 
of the root-transition probability matrix. The stationary distribution of a Markov chain 
is also used in tasks such as measuring the importance of a Web site [16]. 
Here, we briefly describe the stationary distribution of a Markov chain [21]. If the initial 
state vector is  and the transition probability matrix is , the state probability vector 
after the t steps is as follows. 

 (33) 

The following equation holds if  approaches a constant value  when ; this  
is called the stationary distribution in a Markov chain. 

 (34) 

The equation (34) means that the stationary distribution is an eigenvector for eigenvalue 
1 of the matrix . 
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In our study, the matrix of root transition probabilities corresponds to  in (34). 
However, since our model is a semi-Markov model and the root transition probabilities 
do not include self-transitions, we modify the root-transition matrix by combining it 
with the inverse of the average duration probability  to construct . 

 

(35) 
 
 
 

(36) 

 is the same duration probability in eq. (13), and  are root-transition 
probabilities (16).  
The obtained stationary distributions are shown in Fig. 4. In mode 0, the pitch class 
with the highest percentage was 2, which made D the tonic. On the other hand, in mode 
1, C was the tonic. Thus, m = 0 can be interpreted as the d-minor key and m = 1 as the 
C-major key. The reason why the d-minor was learned instead of the a-minor can be 
interpreted as follows. Several pieces in the JSBChorales371 dataset were written in 
the Dorian mode, which can be identified by having one less key signature than modern 
notation. Hence, in the Phase 1 training (Section 3.2), the learned mode seemed to be a 
mixture of d-minor and a-minor. After that, mode 0 converged into d-minor in the Phase 
2 training. The learned mode 0 had nearly equal proportions of 0 and 1 pitch classes 
corresponding to degree VII. Thus, the proposed model learned the ambiguity of degree 
VII in the minor key. It is also interesting to note that the importance of I and V was 
similar for both modes, but in d-minor, IV was more important than II. 
Furthermore, the pitch class probability can be obtained using the stationary 
distribution, and the logits of the pitch class given a root computed in eq. (18). 

 

(37) 
 

(38) 
The  is the root probability calculated as the stationary distribution of the root-
transition matrix described above. 
Obtained pitch class probabilities are shown in Fig. 5. Unlike the Key Profiles [8, 11, 
23], the pitch class probability of V could be larger than I. This may be partly due to 
the output representation as a binary vector of pitch classes. However, the stationary 
distribution in Fig. 4 appears to express the importance of each degree more clearly 
than the pitch class probabilities in Fig. 5. 
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Fig. 4. Result of the stationary distribution of root pitch classes 

(JSBChorales371, seed=789). The left side is mode m = 0, and the right is 
mode m = 1. 

 

 
Fig. 5. Result of the pitch class probabilities (JSBChorales371, seed=789). The 
left side is mode m = 0, and the right is mode m = 1. 

5 Conclusion 

This paper proposed an unsupervised harmonic analysis based on the neural hidden 
semi-Markov model (HSMM).  The model was constructed with neural networks that 
approximate probability distributions in the HSMM. This technique allowed feasible 
unsupervised learning of model parameters, which has been difficult in previous 
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studies. In addition, we introduced chord quality templates, which enabled the 
harmonic analysis with known chord labels such as chord names and Roman numerals.   
Although we presupposed that the number of modes was two and keys were equivalent 
if transposed, we did not make any other assumption for the two modes. Nevertheless, 
our model could find the minor and major modes and their tonic notes properly, as was 
discussed in Section 4.5. 
However, the Accuracy results on labeled data and examples of obtained analyses 
suggest that our model still has room to improve. An important future work is to 
distinguish passing tones. Since our model is a generative model, it assigns probability 
to all notes in a score. This may cause excess labeling of passing notes, which would 
be more severe for instrumental music. We may consider a method of probabilistic 
estimation of passing notes and changing the generation mechanism depending on 
whether they are passing notes or not. 
If the issue of passing tones is resolved, the proposed method should apply to a wider 
range of music. The true value of unsupervised learning would be demonstrated for 
music after the late Romantic period, for which there is little labeled data. Furthermore, 
the model may be effective for pre-Renaissance music since our model could learn 
modes and tonics unsupervised. 
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