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Abstract. Western popular and art music use the diatonic scale as their foundation 
in both melody and harmony, and restricting to diatonic scales can simplify both 
analysis and composition. However, even mostly diatonic genres contain some 
limited use of chromaticism or accidentals. Therefore, we propose that, after 
creating diatonic music, we can automatically alter selected notes chromatically 
to enhance the melody and harmony. This paper presents several deep learning 
models for generating this chromaticism given a purely diatonic input melody and 
accompanying chord sequence. The altered melody and harmony from the model 
are generally compelling and conform to musical syntax, making our work a 
potentially useful tool for both human and computer agents to augment existing 
compositions or aid in the compositional process.  

Keywords. Chromaticism, Machine Learning, Melody, Music Generation and 
Composition, Trans former  

1 Introduction  

The concepts of diatonicism and chromaticism are fundamental building blocks in 
Western music. Diatonicism is generally seen as the most basic harmonic system and 
refers to the use only of notes from a particular diatonic scale. For example, a song in 
the key of C major that exclusively uses the notes of that key would be seen as purely 
diatonic. In contrast, the chromatic scale refers to a division of the octave into twelve 
equal half steps and does not fit neatly into any one key.  
 

 
Fig. 1. A C major scale. 
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While the use of notes and derived chords from diatonic scales is most common, 
composers from all eras occasionally make alterations to the notes of this diatonic scale 
and instead use notes and chords from the chromatic scale. This process is called 
chromaticism and idiomatic use of it is fundamental to the unique sound of many genres 
of music [1, 2].  
Therefore, due to the great importance of using chromaticism effectively in writing 
compelling music in many genres, developing models that generate or harness it in their 
compositions is an important but largely unexplored area up until this point. The most 
common approach has been to create a model that learns from data when to use 
chromatic and diatonic notes and so freely selects notes not restricted to the diatonic 
pitches. However, this places the burden on the model of learning the difference 
between the two sets of pitches and often results in outputs that drift from one key to 
another or includes a number of “wrong” notes due to the probabilistic nature of these 
methods.  
 

 
Fig. 2. A chromatic scale. 

 
As a result, some successful automatic composition models are restricted exclusively 
to the diatonic scale, eliminating the possibility of incorrect chromatic notes but also 
resulting in simpler sounding outputs. Our goal is to create a tool powered by deep 
learning that could potentially be used in conjunction with existing diatonic models or 
human compositions. To that end, we propose a “post-processing” or editing step that 
inserts chromatic melody notes and chords. We believe that this model breaks new 
ground in this area of deep learning applied to musical chromaticism and will enable 
future explorations as well as lead to generally more interesting sounding music 
generations now and in the future.  

2 Related Work  

Even before the invention and widespread use of neural methods, composers ranging 
from Mozart with his games of dice to Xenakis and Cage’s aleotoric music have used 
algorithmic or computational methods to produce musical output [4]. Today, a great 
deal of work has been produced on the subject of creating models to generate music 
using a variety of differ ent methods. Markov chains and grammars were used both 
historically and, in the present, producing notable works such as Hiller and Isaacson’s 
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Illiac Suite, which is one of the earliest scores produced by a computer [6, 7]. More 
recently, recurrent neural networks have been applied, recognizing the inherently 
sequential nature of music [5]. Other methods include convolutional neural networks, 
notably applied by Huang et al. [9] to the problem of completing musical scores in the 
domain of contrapuntal polyphony. Most recently, the Transformer with its self-
attention and ability to encode long term structure [8] in addition to other deep learning 
methods have been applied to music generation with promising results [9]. Work has 
also been done in the area of harmonizing melodies with appropriate chord changes 
[10]. However, the problem of chromatizing existing diatonic melodies and harmonies 
rather than simply generate them has not been explored previously, despite its great 
importance in musical style. A variety of models have used the simplifying assumption 
of generating purely diatonic outputs, ranging from rule-based systems [11, 12], to a 
deep-learning system [13], opening the door for the creation of a model that could be 
used to augment other exclusively diatonic compositions. Therefore, we introduce this 
model as a means of exploring this area and enabling human and computer composers 
to improve the quality of their material.  

3 Data  

A primary challenge in creating a model to learn patterns of melodic and chordal 
chromaticism is finding a data source with sufficiently rich harmonizations. We use the 
Public Domain Song Anthology book (PDSA), a collection of 347 songs taken from 
popular American folk songs that usefully for this application are provided with two 
sets of harmonizations, one slightly more diatonic and one using more advanced and 
modern jazz harmonies.  
As a pre-processing step, we filter the PDSA to use only the songs in simple duple 
meter (ex. 2/4 and 4/4). Additionally, effort was taken to create a purely diatonic input 
to train with by eliminating all accidentals in the melody and all chords outside of the 
basic diatonic ones, leaving us with a chordal vocabulary of the 14 chords found 
diatonically in the keys of C major and minor for input and the 194 chords found in the 
PDSA with their chromaticism intact for output. The melody notes are encoded with 
midi as tuples in the form of [midi note, duration] with 0 being used to mean rest leading 
up to the highest midi note found in the PDSA, 87 or Eb6. Each song overall is encoded 
as a stream of these tuples for both melody and the attached chords. We also transpose 
all songs to the key of C major or minor for easier learning.  
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Fig. 3. An example song from the PDSA. 

 

 
Fig. 4. The chords diatonic to C major. 

4 Model  

Our model uses both Transformer and LSTM, with the Transformer functioning as the 
encoder and LSTM as the decoder. This Transformer-LSTM hybrid model has been 
used successfully in other recent music generation projects [13]. We also tried several 
other models such as pure LSTM, pure bidirectional LSTM, and pure Transformer. We 
use a nested model to handle the melodic and chordal chromatization in two passes. 
For the chords, we encode each chord name as an integer in the vocabulary and pass 
this input to an encoding layer before going to the Transformer encoder. This 
representation is then decoded by an LSTM before finally going through a fully 
connected layer to generate the next predicted chord based upon the output chromatic 
chord vocabulary. After all chords have been processed, this process is then repeated 
with the melody notes. Each note encoded as midi is passed through a melodic model 
with the same architecture to make the binary classification decision of whether or not 
this melody note should be chromaticized or should remain diatonic. We use the 
convention of chromatizing notes based upon their most likely alteration in the C major 
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scale (ex. Fs become F#s rather than Gbs, As become Bbs rather than A#, etc) as a 
simplification. After both models pass on the input, we recombine the newly 
chromaticized chords and melody with the durations found in the original song and 
generate a MusicXML file for viewing as a score according to the conventions of 
Western notation.  

 
Fig. 5. Generation pipeline for new chromatic song. 

 
This score includes both block voicings of the new chords as well as chord symbols in 
lead sheet notation, allowing for human musicians to play, alter, and voice the 
generations in addition to hear them as they are.  

5  Experiment and Evaluation  

To determine the best model for this problem, we first compared the four architectures 
above to see which produced the most accurate and idiomatic chromaticism. Melodic 
accuracy was defined as the percent of correctly made chromaticization decisions, 
while chordal accuracy was defined as the percent of correctly chosen output chords 
across the dataset given any particular input chord. 
The models were trained using the songs from PDSA with 80% being reserved for 
training and the remainder for validation. Since the data for melodic chromaticism is 
already heavily unbalanced, with approximately 90% of the notes being diatonic, we 
opt to filter out any songs that do not contain any instances of melodic chromaticism 
for training the melodic model. We also set an optional flag for filtering out minor key 
songs to make for easier learning. After all filtering, 176 songs were used to train the 
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chordal model and 121 for the melodic. We use Cross Entropy Loss as our loss function 
and Adam as the optimizer. For the melodic model, as a means of combating the 
aforementioned unbalanced class distribution, we weight the loss function according to 
the prevalence of diatonic versus chromatic notes in the original dataset. In all 
networks, we use a learning rate of 0.001 and a dropout probability of 0.1. The 
transformer based models used two layers each for their respective encoder and 
decoders, with two heads in the multi-head attention in the self-attention layer, an 
embedding dimension of 80, and a feed forward dimension of 400. The LSTM 
component of the models that include one utilizes a hidden dimension of size 100.  

 
Fig. 6. Transformer-LSTM model used for melody and chordal chromaticization. 

 
The pure LSTM model was augmented with a few hands selected features based upon 
domain knowledge, such as the duration of the melody note, the duration of the chord, 
and which chord generated earlier is playing over any given melody note, as these 
features are important to human musicians when deciding how, if at all, to chromaticize 
a note or chord. These values are concatenated with those from the embedding layers 
to form the full input to the model 
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Fig. 7. Loss and accuracy on validation set for each model type 

 
Overall, the Transformer-LSTM model had the highest accuracy on the validation set. 
The Trans former model performed poorly as it tended to overfit heavily on the 
validation set and also struggled to train, likely because of the small dataset. For the 
LSTM based models, making the model bidirectional improved the accuracy, likely 
due to the fact that knowing what comes both before and after a given note or chord 
can help lead to idiomatic and grammatical chordal and melodic patterns. 

6  Conclusion  

Overall, the outputs from the model can at times be quite coherent and pleasant to listen 
to.  

 
Fig. 8. An output phrase with proper use of chromatic passing tones and chromatic 

chords according to standard jazz harmony conventions and the PDSA. 
 
The short example phrase above from the validation set correctly learned to use 
common chromatic melody devices like passing tones, and the generated chord 
progression uses a number of grammatical and typical stylistic hallmarks of chromatic 
harmony, such as secondary dominants and seventh chords.  
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Fig. 9. An example of dissonant, unidiomatic output in the melody. 

 
However, at times some of the generations from the model can be dissonant and not 
grammatical according to the conventions of the styles represented with the PDSA. In 
the following example [Fig. 9], the model has outputted a chord and melody sequence 
that is theoretically plausible in isolation, but the G# in the melody voice directly 
clashes with the root of the chord, making it an unlikely choice for a human composer 
to write. Therefore, in future explorations, we would like to experiment more with 
allowing the model to more consistently select chords and melody notes that do not 
clash with each other, as well as investigate further into variable length and Seq2Seq 
based model, especially for melodic chromaticism.  
The model in its current form can be used by humans and computer music models as a 
tool to give new ideas or make existing compositions more exciting. We believe that 
this model breaks new ground in a mostly unexplored area of music generation and 
opens the door for further investigation in this field. 
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