

Abstract— Jazz improvisations can be constructed from
common idioms woven over a chord progression fabric. Prior
art has shown that probabilistic generative grammars are one
effective means of achieving such improvisations. Here we
introduce another approach using transformational grammars
instead. One advantage that transformational grammars
provide is a form of steering from an underlying melodic
outline. We demonstrate by showing how idioms can be defined
in a transformational grammar and how the placement of
idioms conforms to the outline and chord structure. We
illustrate how transformational grammars can provide unique
and varied improvisations that are suggestive of the outline.
We illustrate the real-time application of this approach in an
educational software tool.

Index Terms — improvisation, grammar, transformation,
substitution, idiom.

I. INTRODUCTION
Teaching and learning improvisation is a topic of interest

to jazz educators. There are several different theories, each
with its own strengths ([1]-[3]). Here we follow the
suggestion of Shelton Berg [1] that much of jazz
improvisation is based on the use of common jazz idioms. In
this paper, we use the word “idiom” to represent any of an
assortment of ideas commonly found in jazz improvisations.
These include various digital patterns, approach tones,
enclosures, etc. [4]. The exact set included is open-ended
due to the extensibility of the language we use to define
them. The playing of some performers can be recognized by
signature idioms. While professional players strive for
novelty, it is widely understood that they also rely on a
variety of practiced idioms as backup.

As we are interested in providing educational software
tools that help users understand jazz solo improvisation, we
have developed an extensible framework based on
transformational grammars that permits both the definition
and application of melodic substitutions representing jazz
idioms to an otherwise plaintive solo or merely a chordal
outline. For example, some jazz educators emphasize
“guide-tone” lines, which are relatively static melodies that
progress from the 7th scale degree of one chord resolving to
the 3rd scale degree of the next, or the altered 5th degree to
an altered 9th [5], [6]. Each substitution is defined as a set of
one or more specific transformations, which specify how the
idiom is realized in various harmonic and melodic contexts.
A transformation is defined as a specification for rewriting a

The authors are with Harvey Mudd College, Claremont, California, 91711
USA. This work was supported in part by NSF CISE REU award
#1359170.

sequence of melody notes into a sequence that could be
considered more interesting.

To show what our transformational grammar system is
able to achieve, Figs. 1 to 3 show how an outline melody
may be transformed. Fig. 1 shows a simple repeating pattern
involving scale tones that are consonant with the
accompanying chords. Fig. 2 shows an example of a melody
created from the simple melody in Fig. 1 by transformations.
The transformed melody is still consonant with the chord
structure but can be regarded as more unique and “jazz
sounding”. The choice of transformations can include
non-determinism. Fig. 3 shows a different result from the
same substitution (transformation set). By understanding the
concept of transformations, improvisation students can
improve their repertoire of improvisation techniques.

Previous work on applying transformations to music is
described in Section II. While the outlines to which our
transformations can be applied are not limited in
complexity, simpler outlines provide the most possibilities
for added nuance. If an outline is too complex, the set of
applicable transformations will be smaller. Outlines can be
constructed by the user, generated by a separate generative
grammar, or by “flattening” the melody of an existing solo.
An advantage of the transformational grammar approach is
that it allows new substitutions and their contained
transformations to be defined and modified by the user.

As the substitutions (sets of related transformations for an
idiom) are applied to different styles of jazz music, their
definitions and ideal placement may change. As it is
impossible to create a single set of substitutions for every
style and type of music or every idiom, we devised a
grammatical framework that allows for the creation of new
transformations and for the modification of already existing
ones. Just as importantly, our grammars have a readable
textual representation, allowing students to follow along and
understand how and when notes are being transformed.

While the transformational grammar approach is intended
to be general enough to apply to basic musical definitions,
we built a specific instance of a transformation system by
augmenting Impro-Visor [7], an open source jazz solo
generator and notation tool that already provides
improvisation using generative grammars. Our work extends
Impro-Visor by adding the ability to define, and then
automatically apply, a transformational grammar.

II. RELATED WORK
Numerous researchers have discussed the possibility of
improvisation using grammars. Johnson-Laird [8] discussed
possible roles of grammar in jazz improvisation. Keller and

A Transformational Grammar Framework for
Improvisation

Alexander M. Putman and Robert M. Keller

Fig. 1. Outline melody

Fig. 2. Outline melody transformed

Fig. 3. One of many possible alternate transformed melodies

Morrison [9] described the use of probabilistic context-free
grammars in generating jazz melodies. Gillick, Tang and
Keller [10] described a method for machine learning of such
grammars from solo transcriptions.

The cited works use grammars to generate improvisations
ab initio based on chord progressions. In contrast, the
present work proposes the use transformational grammars to
transform existing melodies to create improvisations.

Transformations have been previously applied to music
by transforming audio signals [11], evolving counterpoint
using simple note transformations [12], and finding common
rhythm and transposition motifs [13]. These methods
provided modest changes to the melodic structure. As we
seek to make melodic structures more complex, the rules for
transformations need to take more information into account.
Section III explains how we define these rules in a
transformational grammar to achieve this goal.

III. SUBSTITUTIONS AND TRANSFORMATIONS
In our model, a transformation both defines how a group

of notes is modified, as well as when it is appropriate to
apply the modification. From an improviser’s perspective,
this could be viewed as having an awareness of a base

outline and knowing how and when to change existing
groups of notes.

Tables I-II illustrate the possible effects of two distinct
substitutions. In Section III.A, Tables III-IV show how we
specify a transformation using a textual representation.
Transformations also contain a guard condition that is used
to determine applicability, as well as a weight that is used to
determine the likelihood that the transformation will be
applied. These are explained further in Section III.D.

A. Definitions of Transformations
The transformative aspect of a transformation is

expressed using two lists: source-notes, which are notes in
the original melody, and target-notes, which are notes that
replace them. For maximum generality, the notes in the
source-note list are not absolute, but rather have variable
names corresponding to each of the notes. For example, in
Table III, there are two adjacent notes being transformed,
the first being represented by n1 and the second represented
by n2. The target-notes will allow for definition of new
notes to replace the source notes. Examples in Tables III-IV
show how individual notes, such as n1 and n2, are used to
define the target notes.

Table I: A substitution based on half-notes with two of its transformations

source: split-half substitution

target: triplets-up transformation

target: triplets-down transformation

__

Table II: A substitution based on quarter notes, with some transformations

 source: split-quarter substitution

target: eighths-up transformation

target: eights-up-third transformation

target: triplets-up transformation

target: triplets-down transformation

Note manipulation functions accept source notes and
possibly other parameters and return transformed notes. In
Table III, one can see that note manipulation functions
subtract-duration, transpose-chromatic, and set-duration
easily tell the reader how each note in the target is created.

After the note manipulation functions are evaluated, the
notes in the target-notes list are inserted in place of the
source notes. To ensure that a transformed melody will not
be longer or shorter than its original length, the insertion is
only done if the total duration of the notes in source-notes
list equals the total duration of the notes in the evaluated
target-notes list.

B. Guard Conditions
The source and target notes define how an idiom is

created, but they do not dictate where it is placed. Placement
is determined by the “guard-condition” of a transformation.
The guard-condition is a Boolean-valued expression that
determines whether or not a transformation will be applied
to a sequence of source-notes. Note attributes include pitch
and duration, as well as the chord over which it is being
played. The guard condition typically checks certain
attributes of the source-notes that are viewed to have a
significant impact on the quality of the resulting
target-notes.

Guard conditions are constructed from a base of music
specific operators such as duration>, pitch<, and chord=,
which may be combined using common relational operators,
such as and, or, and not. Guard conditions may also use
functions that return certain attributes of notes, such as
whether they are part of the current chord, and
attribute-manipulating functions that operate on attributes of
notes.

Another reason for keeping notes abstract is to make the
grammar rules as accessible as possible. Keeping notes as
abstract variables allows for better flow in reading and
understanding. In the examples of Tables III and IV, the
grammar explains that the first note being transformed is n1
and the second is n2. Reading through, one can then follow
descriptive functions used on each note. Each time one sees
a note variable used, it will be the same note. This permits a
simplified mental model, defining “this is what we have”,
“should it be transformed?”, and “this is how I want it
transformed”.

Table III: Textual specification of transformations for a grace-note
transformation

(transformation
 (description single-ascending-tuple-grace-note)
 (weight 1)
 (source-notes n1 n2)
 (guard-condition
 (and
 (not (triplet? n1))
 (= (note-category n2) Chord)
 (duration>= n1 4)
 (not
 (and
 (rest? n1)
 (= (duration n1) 8)
 (duration>= n2 8)))))
 (target-notes
 (subtract-duration 16 n1)
 (set-duration 16 (transpose-chromatic -1/2 n2))
 n2))

Table IV: Textual specification of transformations for a triplet arpeggio
transformation

 (transformation
 (description ascending)
 (weight 1)
 (source-notes n1 n2 n3)
 (guard-condition
 (and
 (member (relative-pitch n2) (1 3 5))
 (= (duration n2) 4)
 (pitch< n2 n3)
 (not (= (chord-family n2) dominant))))
 (target-notes
 (subtract-duration 8 n1)
 (set-duration 8 (transpose-diatonic -2 n2))
 (scale-duration 1/3
 n2
 (transpose-diatonic 3 n2)
 (transpose-diatonic 5 n2))
 n3))

 An application of a given transformation to a particular
group of notes will always yield the same result, i.e.
individual transformations are always deterministic.
However, substitutions, as sets with possibly more than one
transformation, are not deterministic. For a given
substitution, the specific transformation selected depends on
the relative value of the weights indicated for each
transformation, in addition to a randomization element.

C. Substitutions
Substitution is the term we use to group together

transformations that implement the same idiom. As
transformations are implementations of idioms, substitutions
can be considered to represent the idioms themselves. This
allows us to categorize transformations and give specific
attributes to idioms as a whole. These attributes include a
name, weight, type and an arbitrary number of
transformations. Table V shows how substitutions are
structured in the textual notation.

Table V: Specifying an idiom that consists of multiple transformations.
Ellipses are used to indicate suppressed details of transformations.

 (substitution
 (name grace-note)
 (weight 1)
 (type embellishment)
 (transformation … specification of first transformation …)
 ...
 (transformation … specification of last transformation …))

Substitutions divide into two types. The first type,
representing a significant change to the flow of a piece, is
called a motif. An example of a motif is a triplet arpeggio.
The second type, being an ornament that just goes on top of
a line and doesn't drastically change the color, is called an
embellishment. An example of an embellishment is a grace
note. Because embellishments and motifs aren’t used
equally or for the same purpose, our implementation first
transforms a melody using motif substitutions to make all
the significant changes. The result is then further
transformed with all the embellishment substitutions to add
the ornaments on top of the melody.

Use of motifs vs. embellishments is illustrated in Figs.
4-6. We start with the outline melody in Fig. 4. When we
apply a set of substitutions to the outline melody, the motif
substitutions are applied first, as shown in Fig. 5. That result
is then transformed with the embellishment substitutions

from the set, giving the fully transformed melody, as shown
in Fig. 6. As shown, the more significant alterations are
done with the motif substitutions, while the embellishment
substitutions just add minor ornaments.

D. Transformation Weight within a Substitution
A transformation’s weight is used when the substitution

containing it is being applied. As certain implementations of
an idiom might be more common than others, when a
substitution is being applied to a melody, it will sort its
transformations, giving priority to transformations with
higher weights. We then try to apply each transformation in
sort order, but randomly within a given weight. This will
continue until a transformation successfully transforms the
melody, at which point the transformed melody is returned.
If none of the transformations are able to transform the
melody, the original melody is left unchanged at that point.

IV. SYSTEM IMPLEMENTATION

A. Application of Transformational Grammar
Now that we have defined the grammar framework, we

can understand how it is applied to a melody line. The
grammar specifies a set of substitutions we want applied to a
melody. The system is first given a melody, with
accompanying chords, to transform. As with the application
of transformations described in Section III, the
implementation will rank the applicable substitutions in the
grammar by weight and try to apply them to the melody.
Each substitution and transformation is tried starting with
the first note in the given melody. When one of the selected
substitutions successfully applies a transformation, the
transformed section is added to the transformed melody,
which originally starts empty. Then the process is repeated
on the remaining notes of the melody line that were not
transformed. If no substitution can be applied successfully,
the note of the original melody will be added to the
transformed melody and the process repeated on the rest of
the melody. This is done until there is no more melody to
transform, at which point the transformed solo is returned.
 As described in Section III.C, the process described above
is first done to a melody by the motif substitutions, and then
repeated on the result of that by the embellishment
substitutions in the grammar. The result is the fully
transformed melody.

B. GUI for Transformational Grammars in Impro-Visor
To use our transformational grammars in Impro-Visor [7],

we developed a graphical user interface (GUI) that shows
the different pieces of information in each substitution,
permitting the user to specify different options for applying
the grammar in the program. It also allows users to modify
any aspect of the grammar without having to alter the
grammar file itself. Fig. 7 shows a grammar opened in the
GUI with the substitutions from the default grammar file.

Two settings for applying a transformational grammar are
Rectify and Enforce Duration Equality. Rectify will smooth
the notes of the returned transformed melody that are neither
chord tones nor color tones of their underlying chord into
the closest note that does fit one of those categories. Enforce
Duration Equality requires that the duration of the source of
a transformation must equal that of the target notes.

 Enforce Duration Equality is normally always selected.
One use for unselecting this feature could be to see how a
transformation is being applied when it is not working,
allowing a user to debug an incorrectly written
transformation.

To view or edit the transformations that make up a
substitution, a user has only to select the substitution, at
which point its transformations will fill the Transformations
list. Fig. 7 shows the different actions that are available
when a substitution and transformation are selected. Fig. 7
also shows that the GUI allows the user to change every
aspect of the grammar. Source-notes, condition-guard and
target-notes of a transformation can be edited by clicking the
Edit Transformation button, which opens the transformation
in a text editor window in which the transformations can be
edited, in the form shown in Tables III-IV.

The GUI provides a full visual understanding of the
transformational grammar with the ability to edit all
elements of it. It also adds the feature of allowing a subset of
the full grammar to be enabled when applying to a melody.
This enabled subset of the grammar is shown with
checkboxes for each substitution and transformation. When
a grammar is saved, the subset of enabled grammar pieces
are saved so that users can easily save whichever
substitutions and transformations work best for a piece.

The documentation of all functions the grammar supports
is provided in Impro-Visor and can be seen by clicking the
Show Function Documentation button in the
Transformations Functions section. Impro-Visor also
contains a short tutorial and explanation for the
transformational grammar.

V. SAMPLE RESULTS
Using a set of common idioms described in [1] and [14],

we created a transformational grammar including
substitutions that define the following idioms:

• grace note
• mordent
• triplet arpeggio
• passing tone
• neighbor tones
• triplet ornament

An application of this transformational grammar to the
outline in Fig. 4 is shown in Fig. 6. The outline was
generated using Impro-Visor with a grammar that generates
only chord-tone quarter notes.

VI. FUTURE WORK
The use of a transformational grammar requires an

outline, or simple melody, as a base for transformation.
Outlines that will allow for good transformation results are
not always easily created, so we seek to automate the
“flattening” of complex solos into basic outlines. This will
require detecting the important notes, or goal notes [1] [3],
of a solo and building the outline from them.

As transformations can be time consuming to write and
can change based on musician and style of music, we also
seek a way to learn transformations from transcriptions of
solos. This would allow students to extract transformations
from solos of interest.

VII. CONCLUSION
We have created a transformational grammar framework

to define substitutions that produce idioms from simpler
note groups. Although our particular focus is jazz, the
grammar is sufficiently general to be applicable across a
wide range of music. With a sufficient list of substitutions
and simple starting melody, novel melodies are
automatically generated from the transformation application
process. These melodies can be generated from the same
grammar, so if the substitutions are written to represent a
certain set of styles, the generated melodies should all fit in
that set of styles. The implementation of the grammar in a
free software tool provides the ability to show students how
to transform a plaintive melody idiom by idiom. The
grammar rules have a textual notation readable by users who

are trying to understand how to apply the transformations or
create new ones.

REFERENCES
[1] S. Berg, Jazz Improvisation – The Goal Note Method, Second Edition,

Kendor Music, Delevan, NY, 1992.
[2] J. Bergonzi, Melodic Structures, Advance Music, Mainz, Germany,

1992.
[3] J. Riposo, Target and Approach Tones, Jamey Aebersold, New Albany,

IN, 2011.
[4] J. Coker, Elements of the Jazz Language for the Developing Improvisor,

CPP/Belwin, Inc., Miami, FL, 1991.
[5] T.D. Mason, The Art of Hearing, Hal Leonard Corporation, Milwaukee,

WI, 1997.
[6] T. Pease, Jazz Composition: Theory and Practice, Berklee Press,

Boston, MA, 2003.
[7] R. Keller, http://www.cs.hmc.edu/~keller/jazz/improvisor/, last

consulted December 2014.
[8] P. Johnson-Laird, “How Jazz Musicians Improvise”, Music Perception,

vol. 19, no. 3, pp. 415-442, 2002.
[9] R.M. Keller and David R. Morrison, “A Grammatical Approach to

Automatic Improvisation”, Proc. Fourth Sound and Music Computing
Conference, Lefkada, Greece, July 2007.

[10] J. Gillick, K. Tang, and R. Keller, “Machine Learning of Jazz
Grammars”, Computer Music Journal, Fall 2010, vol. 34, no. 3, pp.
56-66.

[11] E. Gómez, G. Peterschmitt, X. Amatriain, and P. Herrera,
“Content-Based Melodic Transformations of Audio Material for a
Music Processing Application”, Proc. of the 6th Int. Conference on
Digital Audio Effects (DAFX-03), London, UK, September 8-11,
2003

[12] J.P. Jacobs and J.A. Reggia, “Evolving Musical Counterpoint”,
http://arxiv.org/pdf/1207.5560.pdf, 2012, last consulted December
2014.

[13] C. Yoste, “A New Model for Algorithmically Improvised Jazz”,
unpublished report, Willamette University, 2013.

[14] M. Voelpel, The Best of Charlie Parker, Hal Leonard Corporation,
Milwaukee, WI, 2003.

Alexander M. Putman is from Austin,
TX, USA. He is currently a junior
pursuing a Bachelor of Science in
computer science at Harvey Mudd
College in Claremont, California.

His research interests include
domain specific languages, music
software and artificial intelligence. He
worked as a researcher on the
Intelligent Music Software project,
where he implemented the system
described in this paper.

Robert M. Keller received the B.S. in
Engineering Science from Washington
University in St. Louis and the Ph.D.
in Electrical Engineering and
Computer Science from the University
of California, Berkeley. He held
faculty positions at Princeton
University and the University of Utah
prior to his current position of
professor of computer science at
Harvey Mudd College, where he
directs the Intelligent Music Software
project.

In addition to music software, his research interests also include logic,
neural networks, parallel computing, machine learning, and jazz education.
Teaching a course in jazz improvisation for many years motivated and
advanced some of the ideas leading to the present paper.

